Spaces:
Running
Running
Delete app.py
Browse files
app.py
DELETED
|
@@ -1,87 +0,0 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
from typing import List, IO
|
| 3 |
-
|
| 4 |
-
# Import utilities you finalised
|
| 5 |
-
from utils import (
|
| 6 |
-
get_pdf_text,
|
| 7 |
-
get_docx_text,
|
| 8 |
-
get_text_chunks,
|
| 9 |
-
get_vector_store,
|
| 10 |
-
user_input,
|
| 11 |
-
)
|
| 12 |
-
|
| 13 |
-
# ---------------------------------------------------------------------------#
|
| 14 |
-
# Main Streamlit application
|
| 15 |
-
# ---------------------------------------------------------------------------#
|
| 16 |
-
def main() -> None:
|
| 17 |
-
# ----- Page configuration ------------------------------------------------
|
| 18 |
-
st.set_page_config(
|
| 19 |
-
page_title="Docosphere",
|
| 20 |
-
page_icon="📄",
|
| 21 |
-
layout="wide"
|
| 22 |
-
)
|
| 23 |
-
|
| 24 |
-
st.title("📄 Docosphere")
|
| 25 |
-
st.markdown("*Where Documents Come Alive …*")
|
| 26 |
-
|
| 27 |
-
# Two-column layout: Q&A on left, file upload on right
|
| 28 |
-
col_left, col_right = st.columns([2, 1])
|
| 29 |
-
|
| 30 |
-
# --------------------- Right column – document upload -------------------
|
| 31 |
-
with col_right:
|
| 32 |
-
st.markdown("### 📁 Document Upload")
|
| 33 |
-
uploaded_files: List[IO[bytes]] = st.file_uploader(
|
| 34 |
-
"Upload PDF or Word files",
|
| 35 |
-
accept_multiple_files=True,
|
| 36 |
-
type=["pdf", "docx"],
|
| 37 |
-
help="You can select multiple files at once."
|
| 38 |
-
)
|
| 39 |
-
|
| 40 |
-
if st.button("🚀 Process Documents"):
|
| 41 |
-
if not uploaded_files:
|
| 42 |
-
st.warning("📋 Please upload at least one file first.")
|
| 43 |
-
return
|
| 44 |
-
|
| 45 |
-
with st.spinner("🔄 Extracting text & creating vector index…"):
|
| 46 |
-
combined_text = ""
|
| 47 |
-
|
| 48 |
-
pdfs = [f for f in uploaded_files if f.name.lower().endswith(".pdf")]
|
| 49 |
-
docs = [f for f in uploaded_files if f.name.lower().endswith(".docx")]
|
| 50 |
-
|
| 51 |
-
if pdfs:
|
| 52 |
-
combined_text += get_pdf_text(pdfs)
|
| 53 |
-
if docs:
|
| 54 |
-
combined_text += get_docx_text(docs)
|
| 55 |
-
|
| 56 |
-
if combined_text.strip():
|
| 57 |
-
chunks = get_text_chunks(combined_text)
|
| 58 |
-
get_vector_store(chunks)
|
| 59 |
-
st.success("✅ Documents processed! Ask away in the left panel.")
|
| 60 |
-
else:
|
| 61 |
-
st.warning("⚠️ No readable text found in the uploaded files.")
|
| 62 |
-
|
| 63 |
-
with st.expander("ℹ️ How to use"):
|
| 64 |
-
st.markdown(
|
| 65 |
-
"""
|
| 66 |
-
1. Upload one or more **PDF** or **Word** documents.\n
|
| 67 |
-
2. Click **Process Documents** to build the knowledge index.\n
|
| 68 |
-
3. Ask natural-language questions in the input box (left column).\n
|
| 69 |
-
4. The assistant will either answer from its own model knowledge or
|
| 70 |
-
retrieve context from your documents when needed.
|
| 71 |
-
"""
|
| 72 |
-
)
|
| 73 |
-
|
| 74 |
-
# ---------------------- Left column – chat interface --------------------
|
| 75 |
-
with col_left:
|
| 76 |
-
st.markdown("### 💬 Ask Your Question")
|
| 77 |
-
question: str = st.text_input(
|
| 78 |
-
"",
|
| 79 |
-
placeholder="Type a question about your documents or general topics…"
|
| 80 |
-
)
|
| 81 |
-
|
| 82 |
-
if question:
|
| 83 |
-
user_input(question)
|
| 84 |
-
|
| 85 |
-
# Entry-point guard
|
| 86 |
-
if __name__ == "__main__":
|
| 87 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|