File size: 11,972 Bytes
b10b0ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
from typing import Dict
import math
def conv_bn(inp, oup, stride=1, leaky=0):
return nn.Sequential(
nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
nn.BatchNorm2d(oup),
nn.LeakyReLU(negative_slope=leaky, inplace=True)
)
def conv_bn_no_relu(inp, oup, stride):
return nn.Sequential(
nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
nn.BatchNorm2d(oup),
)
def conv_bn1X1(inp, oup, stride, leaky=0):
return nn.Sequential(
nn.Conv2d(inp, oup, 1, stride, padding=0, bias=False),
nn.BatchNorm2d(oup),
nn.LeakyReLU(negative_slope=leaky, inplace=True)
)
def conv_dw(inp, oup, stride, leaky=0.1):
return nn.Sequential(
nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),
nn.BatchNorm2d(inp),
nn.LeakyReLU(negative_slope=leaky, inplace=True),
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
nn.LeakyReLU(negative_slope=leaky, inplace=True),
)
class SSH(nn.Module):
def __init__(self, in_channel, out_channel):
super(SSH, self).__init__()
assert out_channel % 4 == 0
leaky = 0
if (out_channel <= 64):
leaky = 0.1
self.conv3X3 = conv_bn_no_relu(in_channel, out_channel//2, stride=1)
self.conv5X5_1 = conv_bn(in_channel, out_channel//4, stride=1, leaky = leaky)
self.conv5X5_2 = conv_bn_no_relu(out_channel//4, out_channel//4, stride=1)
self.conv7X7_2 = conv_bn(out_channel//4, out_channel//4, stride=1, leaky = leaky)
self.conv7x7_3 = conv_bn_no_relu(out_channel//4, out_channel//4, stride=1)
def forward(self, input):
conv3X3 = self.conv3X3(input)
conv5X5_1 = self.conv5X5_1(input)
conv5X5 = self.conv5X5_2(conv5X5_1)
conv7X7_2 = self.conv7X7_2(conv5X5_1)
conv7X7 = self.conv7x7_3(conv7X7_2)
out = torch.cat([conv3X3, conv5X5, conv7X7], dim=1)
out = F.relu(out)
return out
class FPN(nn.Module):
def __init__(self,in_channels_list,out_channels):
super(FPN,self).__init__()
leaky = 0
if (out_channels <= 64):
leaky = 0.1
self.output1 = conv_bn1X1(in_channels_list[0], out_channels, stride = 1, leaky = leaky)
self.output2 = conv_bn1X1(in_channels_list[1], out_channels, stride = 1, leaky = leaky)
self.output3 = conv_bn1X1(in_channels_list[2], out_channels, stride = 1, leaky = leaky)
self.merge1 = conv_bn(out_channels, out_channels, leaky = leaky)
self.merge2 = conv_bn(out_channels, out_channels, leaky = leaky)
def forward(self, input):
# names = list(input.keys())
input = list(input.values())
output1 = self.output1(input[0])
output2 = self.output2(input[1])
output3 = self.output3(input[2])
up3 = F.interpolate(output3, size=[output2.size(2), output2.size(3)], mode="nearest")
output2 = output2 + up3
output2 = self.merge2(output2)
up2 = F.interpolate(output2, size=[output1.size(2), output1.size(3)], mode="nearest")
output1 = output1 + up2
output1 = self.merge1(output1)
out = [output1, output2, output3]
return out
class MobileNetV1(nn.Module):
def __init__(self):
super(MobileNetV1, self).__init__()
self.stage1 = nn.Sequential(
conv_bn(3, 8, 2, leaky = 0.1), # 3
conv_dw(8, 16, 1), # 7
conv_dw(16, 32, 2), # 11
conv_dw(32, 32, 1), # 19
conv_dw(32, 64, 2), # 27
conv_dw(64, 64, 1), # 43
)
self.stage2 = nn.Sequential(
conv_dw(64, 128, 2), # 43 + 16 = 59
conv_dw(128, 128, 1), # 59 + 32 = 91
conv_dw(128, 128, 1), # 91 + 32 = 123
conv_dw(128, 128, 1), # 123 + 32 = 155
conv_dw(128, 128, 1), # 155 + 32 = 187
conv_dw(128, 128, 1), # 187 + 32 = 219
)
self.stage3 = nn.Sequential(
conv_dw(128, 256, 2), # 219 + 32 = 251
conv_dw(256, 256, 1), # 251 + 64 = 315
)
self.avg = nn.AdaptiveAvgPool2d((1,1))
self.fc = nn.Linear(256, 1000)
def forward(self, x):
x = self.stage1(x)
x = self.stage2(x)
x = self.stage3(x)
x = self.avg(x)
# x = self.model(x)
x = x.view(-1, 256)
x = self.fc(x)
return x
class ClassHead(nn.Module):
def __init__(self,inchannels=512,num_anchors=3):
super(ClassHead,self).__init__()
self.num_anchors = num_anchors
self.conv1x1 = nn.Conv2d(inchannels,self.num_anchors*2,kernel_size=(1,1),stride=1,padding=0)
def forward(self,x):
out = self.conv1x1(x)
out = out.permute(0,2,3,1).contiguous()
return out.view(out.shape[0], -1, 2)
class BboxHead(nn.Module):
def __init__(self,inchannels=512,num_anchors=3):
super(BboxHead,self).__init__()
self.conv1x1 = nn.Conv2d(inchannels,num_anchors*4,kernel_size=(1,1),stride=1,padding=0)
def forward(self,x):
out = self.conv1x1(x)
out = out.permute(0,2,3,1).contiguous()
return out.view(out.shape[0], -1, 4)
class LandmarkHead(nn.Module):
def __init__(self,inchannels=512,num_anchors=3):
super(LandmarkHead,self).__init__()
self.conv1x1 = nn.Conv2d(inchannels,num_anchors*10,kernel_size=(1,1),stride=1,padding=0)
def forward(self,x):
out = self.conv1x1(x)
out = out.permute(0,2,3,1).contiguous()
return out.view(out.shape[0], -1, 10)
class RetinaFace(nn.Module):
def __init__(self, cfg = None, phase = 'train'):
"""
:param cfg: Network related settings.
:param phase: train or test.
"""
super(RetinaFace,self).__init__()
self.phase = phase
backbone = None
if cfg['name'] == 'mobilenet0.25':
backbone = MobileNetV1()
if cfg['pretrain']:
checkpoint = torch.load("./weights/mobilenetV1X0.25_pretrain.tar", map_location=torch.device('cpu'))
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in checkpoint['state_dict'].items():
name = k[7:] # remove module.
new_state_dict[name] = v
# load params
backbone.load_state_dict(new_state_dict)
elif cfg['name'] == 'Resnet50':
import torchvision.models as models
backbone = models.resnet50(pretrained=cfg['pretrain'])
if cfg['name'] == 'Resnet50':
from torchvision.models._utils import IntermediateLayerGetter
self.body = IntermediateLayerGetter(backbone, cfg['return_layers'])
else:
self.body = backbone
in_channels_stage2 = cfg['in_channel']
in_channels_list = [
in_channels_stage2 * 2,
in_channels_stage2 * 4,
in_channels_stage2 * 8,
]
out_channels = cfg['out_channel']
self.fpn = FPN(in_channels_list,out_channels)
self.ssh1 = SSH(out_channels, out_channels)
self.ssh2 = SSH(out_channels, out_channels)
self.ssh3 = SSH(out_channels, out_channels)
self.ClassHead = self._make_class_head(fpn_num=3, inchannels=cfg['out_channel'])
self.BboxHead = self._make_bbox_head(fpn_num=3, inchannels=cfg['out_channel'])
self.LandmarkHead = self._make_landmark_head(fpn_num=3, inchannels=cfg['out_channel'])
def _make_class_head(self,fpn_num=3,inchannels=64,anchor_num=2):
classhead = nn.ModuleList()
for i in range(fpn_num):
classhead.append(ClassHead(inchannels,anchor_num))
return classhead
def _make_bbox_head(self,fpn_num=3,inchannels=64,anchor_num=2):
bboxhead = nn.ModuleList()
for i in range(fpn_num):
bboxhead.append(BboxHead(inchannels,anchor_num))
return bboxhead
def _make_landmark_head(self,fpn_num=3,inchannels=64,anchor_num=2):
landmarkhead = nn.ModuleList()
for i in range(fpn_num):
landmarkhead.append(LandmarkHead(inchannels,anchor_num))
return landmarkhead
def forward(self,inputs):
out = self.body(inputs)
# FPN
fpn = self.fpn(out)
# SSH
feature1 = self.ssh1(fpn[0])
feature2 = self.ssh2(fpn[1])
feature3 = self.ssh3(fpn[2])
features = [feature1, feature2, feature3]
bbox_regressions = torch.cat([self.BboxHead[i](feature) for i, feature in enumerate(features)], dim=1)
classifications = torch.cat([self.ClassHead[i](feature) for i, feature in enumerate(features)], dim=1)
ldm_regressions = torch.cat([self.LandmarkHead[i](feature) for i, feature in enumerate(features)], dim=1)
if self.phase == 'train':
output = (bbox_regressions, classifications, ldm_regressions)
else:
output = (bbox_regressions, F.softmax(classifications, dim=-1), ldm_regressions)
return output
# Utils for ResNet backbone
class _utils_resnet:
class IntermediateLayerGetter(nn.ModuleDict):
"""
Module wrapper that returns intermediate layers from a model
It has a strong assumption that the modules have been registered
into the model in the same order as they are used.
This means that one should **not** reuse the same nn.Module
twice in the forward if you want this to work.
Additionally, it is only able to query submodules that are directly
assigned to the model. So if `model` is passed, `model.feature1` can
be returned, but not `model.feature1.layer2`.
Arguments:
model (nn.Module): model on which we will extract the features
return_layers (Dict[name, new_name]): a dict containing the names
of the modules for which the activations will be returned as
the key of the dict, and the value of the dict is the name
of the returned activation (which the user can specify).
Examples::
>>> m = torchvision.models.resnet18(pretrained=True)
>>> # extract layer1 and layer3, giving as names `feat1` and feat2`
>>> new_m = torchvision.models._utils.IntermediateLayerGetter(m,
>>> {'layer1': 'feat1', 'layer3': 'feat2'})
>>> out = new_m(x)
>>> print([(k, v.shape) for k, v in out.items()])
>>> [('feat1', torch.Size([1, 64, 56, 56])),
>>> ('feat2', torch.Size([1, 256, 14, 14]))]
"""
_version = 2
__annotations__ = {
"return_layers": Dict[str, str],
}
def __init__(self, model, return_layers):
if not set(return_layers).issubset([name for name, _ in model.named_children()]):
raise ValueError("return_layers are not present in model")
orig_return_layers = return_layers
return_layers = {str(k): str(v) for k, v in return_layers.items()}
layers = OrderedDict()
for name, module in model.named_children():
layers[name] = module
if name in return_layers:
del return_layers[name]
if not return_layers:
break
super(_utils_resnet.IntermediateLayerGetter, self).__init__(layers)
self.return_layers = orig_return_layers
def forward(self, x):
result = OrderedDict()
for name, module in self.items():
x = module(x)
if name in self.return_layers:
out_name = self.return_layers[name]
result[out_name] = x
return result
|