File size: 11,972 Bytes
b10b0ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
from typing import Dict
import math

def conv_bn(inp, oup, stride=1, leaky=0):
    return nn.Sequential(
        nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
        nn.BatchNorm2d(oup),
        nn.LeakyReLU(negative_slope=leaky, inplace=True)
    )

def conv_bn_no_relu(inp, oup, stride):
    return nn.Sequential(
        nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
        nn.BatchNorm2d(oup),
    )

def conv_bn1X1(inp, oup, stride, leaky=0):
    return nn.Sequential(
        nn.Conv2d(inp, oup, 1, stride, padding=0, bias=False),
        nn.BatchNorm2d(oup),
        nn.LeakyReLU(negative_slope=leaky, inplace=True)
    )

def conv_dw(inp, oup, stride, leaky=0.1):
    return nn.Sequential(
        nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),
        nn.BatchNorm2d(inp),
        nn.LeakyReLU(negative_slope=leaky, inplace=True),

        nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
        nn.BatchNorm2d(oup),
        nn.LeakyReLU(negative_slope=leaky, inplace=True),
    )

class SSH(nn.Module):
    def __init__(self, in_channel, out_channel):
        super(SSH, self).__init__()
        assert out_channel % 4 == 0
        leaky = 0
        if (out_channel <= 64):
            leaky = 0.1
        self.conv3X3 = conv_bn_no_relu(in_channel, out_channel//2, stride=1)

        self.conv5X5_1 = conv_bn(in_channel, out_channel//4, stride=1, leaky = leaky)
        self.conv5X5_2 = conv_bn_no_relu(out_channel//4, out_channel//4, stride=1)

        self.conv7X7_2 = conv_bn(out_channel//4, out_channel//4, stride=1, leaky = leaky)
        self.conv7x7_3 = conv_bn_no_relu(out_channel//4, out_channel//4, stride=1)

    def forward(self, input):
        conv3X3 = self.conv3X3(input)

        conv5X5_1 = self.conv5X5_1(input)
        conv5X5 = self.conv5X5_2(conv5X5_1)

        conv7X7_2 = self.conv7X7_2(conv5X5_1)
        conv7X7 = self.conv7x7_3(conv7X7_2)

        out = torch.cat([conv3X3, conv5X5, conv7X7], dim=1)
        out = F.relu(out)
        return out

class FPN(nn.Module):
    def __init__(self,in_channels_list,out_channels):
        super(FPN,self).__init__()
        leaky = 0
        if (out_channels <= 64):
            leaky = 0.1
        self.output1 = conv_bn1X1(in_channels_list[0], out_channels, stride = 1, leaky = leaky)
        self.output2 = conv_bn1X1(in_channels_list[1], out_channels, stride = 1, leaky = leaky)
        self.output3 = conv_bn1X1(in_channels_list[2], out_channels, stride = 1, leaky = leaky)

        self.merge1 = conv_bn(out_channels, out_channels, leaky = leaky)
        self.merge2 = conv_bn(out_channels, out_channels, leaky = leaky)

    def forward(self, input):
        # names = list(input.keys())
        input = list(input.values())

        output1 = self.output1(input[0])
        output2 = self.output2(input[1])
        output3 = self.output3(input[2])

        up3 = F.interpolate(output3, size=[output2.size(2), output2.size(3)], mode="nearest")
        output2 = output2 + up3
        output2 = self.merge2(output2)

        up2 = F.interpolate(output2, size=[output1.size(2), output1.size(3)], mode="nearest")
        output1 = output1 + up2
        output1 = self.merge1(output1)

        out = [output1, output2, output3]
        return out

class MobileNetV1(nn.Module):
    def __init__(self):
        super(MobileNetV1, self).__init__()
        self.stage1 = nn.Sequential(
            conv_bn(3, 8, 2, leaky = 0.1),    # 3
            conv_dw(8, 16, 1),   # 7
            conv_dw(16, 32, 2),  # 11
            conv_dw(32, 32, 1),  # 19
            conv_dw(32, 64, 2),  # 27
            conv_dw(64, 64, 1),  # 43
        )
        self.stage2 = nn.Sequential(
            conv_dw(64, 128, 2),  # 43 + 16 = 59
            conv_dw(128, 128, 1), # 59 + 32 = 91
            conv_dw(128, 128, 1), # 91 + 32 = 123
            conv_dw(128, 128, 1), # 123 + 32 = 155
            conv_dw(128, 128, 1), # 155 + 32 = 187
            conv_dw(128, 128, 1), # 187 + 32 = 219
        )
        self.stage3 = nn.Sequential(
            conv_dw(128, 256, 2), # 219 + 32 = 251
            conv_dw(256, 256, 1), # 251 + 64 = 315
        )
        self.avg = nn.AdaptiveAvgPool2d((1,1))
        self.fc = nn.Linear(256, 1000)

    def forward(self, x):
        x = self.stage1(x)
        x = self.stage2(x)
        x = self.stage3(x)
        x = self.avg(x)
        # x = self.model(x)
        x = x.view(-1, 256)
        x = self.fc(x)
        return x

class ClassHead(nn.Module):
    def __init__(self,inchannels=512,num_anchors=3):
        super(ClassHead,self).__init__()
        self.num_anchors = num_anchors
        self.conv1x1 = nn.Conv2d(inchannels,self.num_anchors*2,kernel_size=(1,1),stride=1,padding=0)

    def forward(self,x):
        out = self.conv1x1(x)
        out = out.permute(0,2,3,1).contiguous()
        
        return out.view(out.shape[0], -1, 2)

class BboxHead(nn.Module):
    def __init__(self,inchannels=512,num_anchors=3):
        super(BboxHead,self).__init__()
        self.conv1x1 = nn.Conv2d(inchannels,num_anchors*4,kernel_size=(1,1),stride=1,padding=0)

    def forward(self,x):
        out = self.conv1x1(x)
        out = out.permute(0,2,3,1).contiguous()

        return out.view(out.shape[0], -1, 4)

class LandmarkHead(nn.Module):
    def __init__(self,inchannels=512,num_anchors=3):
        super(LandmarkHead,self).__init__()
        self.conv1x1 = nn.Conv2d(inchannels,num_anchors*10,kernel_size=(1,1),stride=1,padding=0)

    def forward(self,x):
        out = self.conv1x1(x)
        out = out.permute(0,2,3,1).contiguous()

        return out.view(out.shape[0], -1, 10)

class RetinaFace(nn.Module):
    def __init__(self, cfg = None, phase = 'train'):
        """
        :param cfg:  Network related settings.
        :param phase: train or test.
        """
        super(RetinaFace,self).__init__()
        self.phase = phase
        backbone = None
        if cfg['name'] == 'mobilenet0.25':
            backbone = MobileNetV1()
            if cfg['pretrain']:
                checkpoint = torch.load("./weights/mobilenetV1X0.25_pretrain.tar", map_location=torch.device('cpu'))
                from collections import OrderedDict
                new_state_dict = OrderedDict()
                for k, v in checkpoint['state_dict'].items():
                    name = k[7:]  # remove module.
                    new_state_dict[name] = v
                # load params
                backbone.load_state_dict(new_state_dict)
        elif cfg['name'] == 'Resnet50':
            import torchvision.models as models
            backbone = models.resnet50(pretrained=cfg['pretrain'])

        if cfg['name'] == 'Resnet50':
            from torchvision.models._utils import IntermediateLayerGetter
            self.body = IntermediateLayerGetter(backbone, cfg['return_layers'])
        else:
            self.body = backbone

        in_channels_stage2 = cfg['in_channel']
        in_channels_list = [
            in_channels_stage2 * 2,
            in_channels_stage2 * 4,
            in_channels_stage2 * 8,
        ]
        out_channels = cfg['out_channel']
        self.fpn = FPN(in_channels_list,out_channels)
        self.ssh1 = SSH(out_channels, out_channels)
        self.ssh2 = SSH(out_channels, out_channels)
        self.ssh3 = SSH(out_channels, out_channels)

        self.ClassHead = self._make_class_head(fpn_num=3, inchannels=cfg['out_channel'])
        self.BboxHead = self._make_bbox_head(fpn_num=3, inchannels=cfg['out_channel'])
        self.LandmarkHead = self._make_landmark_head(fpn_num=3, inchannels=cfg['out_channel'])

    def _make_class_head(self,fpn_num=3,inchannels=64,anchor_num=2):
        classhead = nn.ModuleList()
        for i in range(fpn_num):
            classhead.append(ClassHead(inchannels,anchor_num))
        return classhead
    
    def _make_bbox_head(self,fpn_num=3,inchannels=64,anchor_num=2):
        bboxhead = nn.ModuleList()
        for i in range(fpn_num):
            bboxhead.append(BboxHead(inchannels,anchor_num))
        return bboxhead

    def _make_landmark_head(self,fpn_num=3,inchannels=64,anchor_num=2):
        landmarkhead = nn.ModuleList()
        for i in range(fpn_num):
            landmarkhead.append(LandmarkHead(inchannels,anchor_num))
        return landmarkhead

    def forward(self,inputs):
        out = self.body(inputs)

        # FPN
        fpn = self.fpn(out)

        # SSH
        feature1 = self.ssh1(fpn[0])
        feature2 = self.ssh2(fpn[1])
        feature3 = self.ssh3(fpn[2])
        features = [feature1, feature2, feature3]

        bbox_regressions = torch.cat([self.BboxHead[i](feature) for i, feature in enumerate(features)], dim=1)
        classifications = torch.cat([self.ClassHead[i](feature) for i, feature in enumerate(features)], dim=1)
        ldm_regressions = torch.cat([self.LandmarkHead[i](feature) for i, feature in enumerate(features)], dim=1)

        if self.phase == 'train':
            output = (bbox_regressions, classifications, ldm_regressions)
        else:
            output = (bbox_regressions, F.softmax(classifications, dim=-1), ldm_regressions)
        return output

# Utils for ResNet backbone
class _utils_resnet:
    class IntermediateLayerGetter(nn.ModuleDict):
        """
        Module wrapper that returns intermediate layers from a model

        It has a strong assumption that the modules have been registered
        into the model in the same order as they are used.
        This means that one should **not** reuse the same nn.Module
        twice in the forward if you want this to work.

        Additionally, it is only able to query submodules that are directly
        assigned to the model. So if `model` is passed, `model.feature1` can
        be returned, but not `model.feature1.layer2`.

        Arguments:
            model (nn.Module): model on which we will extract the features
            return_layers (Dict[name, new_name]): a dict containing the names
                of the modules for which the activations will be returned as
                the key of the dict, and the value of the dict is the name
                of the returned activation (which the user can specify).

        Examples::

            >>> m = torchvision.models.resnet18(pretrained=True)
            >>> # extract layer1 and layer3, giving as names `feat1` and feat2`
            >>> new_m = torchvision.models._utils.IntermediateLayerGetter(m,
            >>>     {'layer1': 'feat1', 'layer3': 'feat2'})
            >>> out = new_m(x)
            >>> print([(k, v.shape) for k, v in out.items()])
            >>>     [('feat1', torch.Size([1, 64, 56, 56])),
            >>>      ('feat2', torch.Size([1, 256, 14, 14]))]
        """
        _version = 2
        __annotations__ = {
            "return_layers": Dict[str, str],
        }

        def __init__(self, model, return_layers):
            if not set(return_layers).issubset([name for name, _ in model.named_children()]):
                raise ValueError("return_layers are not present in model")
            orig_return_layers = return_layers
            return_layers = {str(k): str(v) for k, v in return_layers.items()}
            layers = OrderedDict()
            for name, module in model.named_children():
                layers[name] = module
                if name in return_layers:
                    del return_layers[name]
                if not return_layers:
                    break

            super(_utils_resnet.IntermediateLayerGetter, self).__init__(layers)
            self.return_layers = orig_return_layers

        def forward(self, x):
            result = OrderedDict()
            for name, module in self.items():
                x = module(x)
                if name in self.return_layers:
                    out_name = self.return_layers[name]
                    result[out_name] = x
            return result