Commit
Β·
2d98925
1
Parent(s):
6feecf0
Fix Gradio JSON schema error: Simplify interface and use stable version
Browse files- Downgrade to Gradio 4.36.0 (stable version without JSON schema issues)
- Completely rewrite app.py with simplified interface structure
- Remove complex API functions that were causing schema parsing errors
- Use straightforward input/output types that Gradio can handle properly
- Maintain core face detection functionality while fixing runtime errors
- README.md +1 -1
- app.py +189 -367
- requirements.txt +1 -1
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: π
|
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 4.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
|
|
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.36.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
app.py
CHANGED
|
@@ -9,6 +9,7 @@ import tempfile
|
|
| 9 |
import time
|
| 10 |
from PIL import Image, ImageDraw
|
| 11 |
import json
|
|
|
|
| 12 |
|
| 13 |
# Import RetinaFace model components
|
| 14 |
from models.retinaface import RetinaFace
|
|
@@ -26,6 +27,47 @@ def load_models():
|
|
| 26 |
global mobilenet_model, resnet_model
|
| 27 |
|
| 28 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
# Load MobileNet model
|
| 30 |
mobilenet_model = RetinaFace(cfg=mobilenet_cfg, phase='test')
|
| 31 |
mobilenet_model.load_state_dict(torch.load('mobilenet0.25_Final.pth', map_location=device))
|
|
@@ -38,422 +80,202 @@ def load_models():
|
|
| 38 |
resnet_model.eval()
|
| 39 |
resnet_model = resnet_model.to(device)
|
| 40 |
|
| 41 |
-
print("Models loaded successfully!")
|
| 42 |
-
return
|
| 43 |
|
| 44 |
except Exception as e:
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
return error_msg
|
| 48 |
|
| 49 |
-
|
| 50 |
-
mobilenet_cfg = {
|
| 51 |
-
'name': 'mobilenet0.25',
|
| 52 |
-
'min_sizes': [[16, 32], [64, 128], [256, 512]],
|
| 53 |
-
'steps': [8, 16, 32],
|
| 54 |
-
'variance': [0.1, 0.2],
|
| 55 |
-
'clip': False,
|
| 56 |
-
'loc_weight': 2.0,
|
| 57 |
-
'gpu_train': True,
|
| 58 |
-
'batch_size': 32,
|
| 59 |
-
'ngpu': 1,
|
| 60 |
-
'epoch': 250,
|
| 61 |
-
'decay1': 190,
|
| 62 |
-
'decay2': 220,
|
| 63 |
-
'image_size': 640,
|
| 64 |
-
'pretrain': False, # Don't load pretrained weights
|
| 65 |
-
'return_layers': {'stage1': 1, 'stage2': 2, 'stage3': 3},
|
| 66 |
-
'in_channel': 32,
|
| 67 |
-
'out_channel': 64
|
| 68 |
-
}
|
| 69 |
-
|
| 70 |
-
resnet_cfg = {
|
| 71 |
-
'name': 'Resnet50',
|
| 72 |
-
'min_sizes': [[16, 32], [64, 128], [256, 512]],
|
| 73 |
-
'steps': [8, 16, 32],
|
| 74 |
-
'variance': [0.1, 0.2],
|
| 75 |
-
'clip': False,
|
| 76 |
-
'loc_weight': 2.0,
|
| 77 |
-
'gpu_train': True,
|
| 78 |
-
'batch_size': 24,
|
| 79 |
-
'ngpu': 4,
|
| 80 |
-
'epoch': 100,
|
| 81 |
-
'decay1': 70,
|
| 82 |
-
'decay2': 90,
|
| 83 |
-
'image_size': 840,
|
| 84 |
-
'pretrain': False, # Don't load pretrained weights
|
| 85 |
-
'return_layers': {'layer2': 1, 'layer3': 2, 'layer4': 3},
|
| 86 |
-
'in_channel': 256,
|
| 87 |
-
'out_channel': 256
|
| 88 |
-
}
|
| 89 |
-
|
| 90 |
-
def detect_faces_core(image, model, cfg, confidence_threshold=0.02, nms_threshold=0.4):
|
| 91 |
"""Core face detection function"""
|
| 92 |
-
start_time = time.time()
|
| 93 |
-
|
| 94 |
-
# Preprocessing
|
| 95 |
-
img = np.float32(image)
|
| 96 |
-
im_height, im_width, _ = img.shape
|
| 97 |
-
scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
|
| 98 |
-
img -= (104, 117, 123)
|
| 99 |
-
img = img.transpose(2, 0, 1)
|
| 100 |
-
img = torch.from_numpy(img).unsqueeze(0)
|
| 101 |
-
img = img.to(device)
|
| 102 |
-
scale = scale.to(device)
|
| 103 |
-
|
| 104 |
-
# Forward pass
|
| 105 |
-
with torch.no_grad():
|
| 106 |
-
loc, conf, landms = model(img)
|
| 107 |
-
|
| 108 |
-
# Post-processing
|
| 109 |
-
priorbox = PriorBox(cfg, image_size=(im_height, im_width))
|
| 110 |
-
priors = priorbox.forward()
|
| 111 |
-
priors = priors.to(device)
|
| 112 |
-
prior_data = priors.data
|
| 113 |
-
boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance'])
|
| 114 |
-
boxes = boxes * scale / 1
|
| 115 |
-
boxes = boxes.cpu().numpy()
|
| 116 |
-
scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
|
| 117 |
-
landms = decode_landm(landms.data.squeeze(0), prior_data, cfg['variance'])
|
| 118 |
-
scale1 = torch.Tensor([img.shape[3], img.shape[2], img.shape[3], img.shape[2],
|
| 119 |
-
img.shape[3], img.shape[2], img.shape[3], img.shape[2],
|
| 120 |
-
img.shape[3], img.shape[2]])
|
| 121 |
-
scale1 = scale1.to(device)
|
| 122 |
-
landms = landms * scale1 / 1
|
| 123 |
-
landms = landms.cpu().numpy()
|
| 124 |
-
|
| 125 |
-
# Ignore low scores
|
| 126 |
-
inds = np.where(scores > confidence_threshold)[0]
|
| 127 |
-
boxes = boxes[inds]
|
| 128 |
-
landms = landms[inds]
|
| 129 |
-
scores = scores[inds]
|
| 130 |
-
|
| 131 |
-
# Keep top-K before NMS
|
| 132 |
-
order = scores.argsort()[::-1][:5000]
|
| 133 |
-
boxes = boxes[order]
|
| 134 |
-
landms = landms[order]
|
| 135 |
-
scores = scores[order]
|
| 136 |
-
|
| 137 |
-
# Do NMS
|
| 138 |
-
dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
|
| 139 |
-
keep = py_cpu_nms(dets, nms_threshold)
|
| 140 |
-
dets = dets[keep, :]
|
| 141 |
-
landms = landms[keep]
|
| 142 |
-
|
| 143 |
-
# Format results
|
| 144 |
-
faces = []
|
| 145 |
-
for i in range(dets.shape[0]):
|
| 146 |
-
if dets[i, 4] < confidence_threshold:
|
| 147 |
-
continue
|
| 148 |
-
|
| 149 |
-
face = {
|
| 150 |
-
"bbox": {
|
| 151 |
-
"x1": float(dets[i, 0]),
|
| 152 |
-
"y1": float(dets[i, 1]),
|
| 153 |
-
"x2": float(dets[i, 2]),
|
| 154 |
-
"y2": float(dets[i, 3])
|
| 155 |
-
},
|
| 156 |
-
"confidence": float(dets[i, 4]),
|
| 157 |
-
"landmarks": {
|
| 158 |
-
"right_eye": [float(landms[i, 0]), float(landms[i, 1])],
|
| 159 |
-
"left_eye": [float(landms[i, 2]), float(landms[i, 3])],
|
| 160 |
-
"nose": [float(landms[i, 4]), float(landms[i, 5])],
|
| 161 |
-
"right_mouth": [float(landms[i, 6]), float(landms[i, 7])],
|
| 162 |
-
"left_mouth": [float(landms[i, 8]), float(landms[i, 9])]
|
| 163 |
-
}
|
| 164 |
-
}
|
| 165 |
-
faces.append(face)
|
| 166 |
-
|
| 167 |
-
processing_time = time.time() - start_time
|
| 168 |
-
return faces, processing_time
|
| 169 |
-
|
| 170 |
-
def draw_faces_on_image(image, faces):
|
| 171 |
-
"""Draw bounding boxes and landmarks on image"""
|
| 172 |
-
if isinstance(image, np.ndarray):
|
| 173 |
-
# Convert numpy array to PIL Image
|
| 174 |
-
image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
| 175 |
-
|
| 176 |
-
draw = ImageDraw.Draw(image)
|
| 177 |
-
|
| 178 |
-
for face in faces:
|
| 179 |
-
bbox = face["bbox"]
|
| 180 |
-
confidence = face["confidence"]
|
| 181 |
-
landmarks = face["landmarks"]
|
| 182 |
-
|
| 183 |
-
# Draw bounding box
|
| 184 |
-
draw.rectangle([bbox["x1"], bbox["y1"], bbox["x2"], bbox["y2"]],
|
| 185 |
-
outline="red", width=2)
|
| 186 |
-
|
| 187 |
-
# Draw confidence score
|
| 188 |
-
draw.text((bbox["x1"], bbox["y1"] - 15),
|
| 189 |
-
f'{confidence:.2f}', fill="red")
|
| 190 |
-
|
| 191 |
-
# Draw landmarks
|
| 192 |
-
for landmark_name, (x, y) in landmarks.items():
|
| 193 |
-
draw.ellipse([x-2, y-2, x+2, y+2], fill="blue")
|
| 194 |
-
|
| 195 |
-
return image
|
| 196 |
-
|
| 197 |
-
def gradio_detect_faces(image, model_type, confidence_threshold, nms_threshold):
|
| 198 |
-
"""Gradio interface function for face detection"""
|
| 199 |
-
if mobilenet_model is None or resnet_model is None:
|
| 200 |
-
return None, "β Models not loaded. Please wait for models to load.", ""
|
| 201 |
-
|
| 202 |
try:
|
| 203 |
-
|
| 204 |
-
if isinstance(image, Image.Image):
|
| 205 |
-
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
| 206 |
|
| 207 |
-
#
|
| 208 |
-
if model_type
|
| 209 |
model = resnet_model
|
| 210 |
-
cfg =
|
| 211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
else:
|
| 213 |
model = mobilenet_model
|
| 214 |
-
cfg =
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
# Draw results on image
|
| 223 |
-
result_image = draw_faces_on_image(image.copy(), faces)
|
| 224 |
-
|
| 225 |
-
# Create results text
|
| 226 |
-
results_text = f"π― **Detection Results**\n"
|
| 227 |
-
results_text += f"π± Model: {model_name}\n"
|
| 228 |
-
results_text += f"β±οΈ Processing Time: {processing_time:.3f}s\n"
|
| 229 |
-
results_text += f"π₯ Faces Detected: {len(faces)}\n\n"
|
| 230 |
-
|
| 231 |
-
for i, face in enumerate(faces):
|
| 232 |
-
results_text += f"**Face {i+1}:**\n"
|
| 233 |
-
results_text += f" Confidence: {face['confidence']:.3f}\n"
|
| 234 |
-
bbox = face['bbox']
|
| 235 |
-
results_text += f" Location: ({bbox['x1']:.0f}, {bbox['y1']:.0f}) - ({bbox['x2']:.0f}, {bbox['y2']:.0f})\n\n"
|
| 236 |
-
|
| 237 |
-
# Create JSON output for API use
|
| 238 |
-
json_output = {
|
| 239 |
-
"faces": faces,
|
| 240 |
-
"processing_time": processing_time,
|
| 241 |
-
"model_used": model_name.lower(),
|
| 242 |
-
"total_faces": len(faces)
|
| 243 |
-
}
|
| 244 |
-
|
| 245 |
-
return result_image, results_text, json.dumps(json_output, indent=2)
|
| 246 |
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
|
| 272 |
-
|
| 273 |
-
return {"error": f"{model_name} model not loaded"}
|
| 274 |
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
|
| 280 |
-
return
|
| 281 |
-
"faces": faces,
|
| 282 |
-
"processing_time": processing_time,
|
| 283 |
-
"model_used": model_name,
|
| 284 |
-
"total_faces": len(faces)
|
| 285 |
-
}
|
| 286 |
|
| 287 |
except Exception as e:
|
| 288 |
-
return
|
| 289 |
|
| 290 |
# Load models on startup
|
| 291 |
print("Loading RetinaFace models...")
|
| 292 |
-
|
| 293 |
|
| 294 |
-
# Create Gradio interface
|
| 295 |
-
|
| 296 |
-
gr.
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
""")
|
| 306 |
-
|
| 307 |
-
with gr.Row():
|
| 308 |
-
gr.Markdown(f"**Status**: {load_status}")
|
| 309 |
-
|
| 310 |
-
with gr.Tab("πΌοΈ Image Detection"):
|
| 311 |
with gr.Row():
|
| 312 |
with gr.Column():
|
| 313 |
input_image = gr.Image(type="pil", label="Upload Image")
|
| 314 |
model_choice = gr.Dropdown(
|
| 315 |
choices=["mobilenet", "resnet"],
|
| 316 |
value="mobilenet",
|
| 317 |
-
label="Model
|
| 318 |
)
|
| 319 |
-
|
| 320 |
minimum=0.1, maximum=1.0, value=0.5, step=0.1,
|
| 321 |
-
label="Confidence
|
| 322 |
)
|
| 323 |
-
|
| 324 |
minimum=0.1, maximum=1.0, value=0.4, step=0.1,
|
| 325 |
label="NMS Threshold"
|
| 326 |
)
|
| 327 |
detect_btn = gr.Button("π Detect Faces", variant="primary")
|
| 328 |
|
| 329 |
with gr.Column():
|
| 330 |
-
output_image = gr.Image(label="
|
| 331 |
-
|
| 332 |
|
| 333 |
detect_btn.click(
|
| 334 |
-
fn=
|
| 335 |
-
inputs=[input_image, model_choice,
|
| 336 |
-
outputs=[output_image,
|
| 337 |
)
|
| 338 |
-
|
| 339 |
-
with gr.Tab("π API Documentation"):
|
| 340 |
-
gr.Markdown("""
|
| 341 |
-
## API Endpoints for Thunkable Integration
|
| 342 |
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
```
|
| 347 |
-
|
| 348 |
-
**Request Body (JSON):**
|
| 349 |
-
```json
|
| 350 |
-
{
|
| 351 |
-
"data": [
|
| 352 |
-
"base64_encoded_image_string",
|
| 353 |
-
"mobilenet",
|
| 354 |
-
0.5,
|
| 355 |
-
0.4
|
| 356 |
-
]
|
| 357 |
-
}
|
| 358 |
-
```
|
| 359 |
-
|
| 360 |
-
**Response:**
|
| 361 |
-
```json
|
| 362 |
-
{
|
| 363 |
-
"data": [
|
| 364 |
-
{
|
| 365 |
-
"faces": [...],
|
| 366 |
-
"processing_time": 0.1,
|
| 367 |
-
"model_used": "mobilenet",
|
| 368 |
-
"total_faces": 2
|
| 369 |
-
}
|
| 370 |
-
]
|
| 371 |
-
}
|
| 372 |
-
```
|
| 373 |
-
|
| 374 |
-
### 2. Thunkable Integration Example
|
| 375 |
-
|
| 376 |
-
**Web API Component Setup:**
|
| 377 |
-
- URL: `https://your-space-name.hf.space/api/predict`
|
| 378 |
-
- Method: `POST`
|
| 379 |
-
- Headers: `Content-Type: application/json`
|
| 380 |
-
- Body:
|
| 381 |
```json
|
| 382 |
{
|
| 383 |
-
"data": [
|
| 384 |
-
"{{base64_image}}",
|
| 385 |
-
"mobilenet",
|
| 386 |
-
0.5,
|
| 387 |
-
0.4
|
| 388 |
-
]
|
| 389 |
}
|
| 390 |
```
|
| 391 |
-
|
| 392 |
-
### 3. Model Performance
|
| 393 |
-
|
| 394 |
-
| Model | Speed | Accuracy | Best For |
|
| 395 |
-
|-------|-------|----------|----------|
|
| 396 |
-
| MobileNet | β‘ Fast | π― Good | Real-time mobile apps |
|
| 397 |
-
| ResNet50 | π Slower | π―π― High | High-accuracy applications |
|
| 398 |
-
|
| 399 |
-
### 4. Response Format
|
| 400 |
-
|
| 401 |
-
Each detected face includes:
|
| 402 |
-
- **bbox**: Bounding box coordinates (x1, y1, x2, y2)
|
| 403 |
-
- **confidence**: Detection confidence score (0-1)
|
| 404 |
-
- **landmarks**: 5-point facial landmarks (eyes, nose, mouth corners)
|
| 405 |
""")
|
| 406 |
|
| 407 |
-
|
| 408 |
-
gr.Markdown("### Test the API with base64 encoded images")
|
| 409 |
-
|
| 410 |
-
with gr.Row():
|
| 411 |
-
with gr.Column():
|
| 412 |
-
test_image_b64 = gr.Textbox(
|
| 413 |
-
label="Base64 Encoded Image",
|
| 414 |
-
placeholder="Paste base64 encoded image here...",
|
| 415 |
-
lines=3
|
| 416 |
-
)
|
| 417 |
-
test_model = gr.Dropdown(
|
| 418 |
-
choices=["mobilenet", "resnet"],
|
| 419 |
-
value="mobilenet",
|
| 420 |
-
label="Model"
|
| 421 |
-
)
|
| 422 |
-
test_conf = gr.Number(value=0.5, label="Confidence")
|
| 423 |
-
test_nms = gr.Number(value=0.4, label="NMS Threshold")
|
| 424 |
-
test_btn = gr.Button("π§ͺ Test API", variant="secondary")
|
| 425 |
-
|
| 426 |
-
with gr.Column():
|
| 427 |
-
api_output = gr.JSON(label="API Response")
|
| 428 |
-
|
| 429 |
-
def test_api_function(image_b64, model, conf, nms):
|
| 430 |
-
if not image_b64.strip():
|
| 431 |
-
return {"error": "Please provide base64 encoded image"}
|
| 432 |
-
|
| 433 |
-
# Remove data URL prefix if present
|
| 434 |
-
if image_b64.startswith('data:image'):
|
| 435 |
-
image_b64 = image_b64.split(',')[1]
|
| 436 |
-
|
| 437 |
-
result = api_detect_live(image_b64, model, conf, nms)
|
| 438 |
-
return result
|
| 439 |
-
|
| 440 |
-
test_btn.click(
|
| 441 |
-
fn=test_api_function,
|
| 442 |
-
inputs=[test_image_b64, test_model, test_conf, test_nms],
|
| 443 |
-
outputs=[api_output]
|
| 444 |
-
)
|
| 445 |
|
| 446 |
-
#
|
| 447 |
-
|
| 448 |
-
"""API prediction function that matches Gradio's expected format"""
|
| 449 |
-
result = api_detect_live(image_base64, model_type, confidence_threshold, nms_threshold)
|
| 450 |
-
return result
|
| 451 |
|
| 452 |
-
# Launch the app
|
| 453 |
if __name__ == "__main__":
|
| 454 |
demo.launch(
|
| 455 |
server_name="0.0.0.0",
|
| 456 |
server_port=7860,
|
| 457 |
-
share=True
|
| 458 |
-
show_error=True
|
| 459 |
)
|
|
|
|
| 9 |
import time
|
| 10 |
from PIL import Image, ImageDraw
|
| 11 |
import json
|
| 12 |
+
import io
|
| 13 |
|
| 14 |
# Import RetinaFace model components
|
| 15 |
from models.retinaface import RetinaFace
|
|
|
|
| 27 |
global mobilenet_model, resnet_model
|
| 28 |
|
| 29 |
try:
|
| 30 |
+
# Model configurations
|
| 31 |
+
mobilenet_cfg = {
|
| 32 |
+
'name': 'mobilenet0.25',
|
| 33 |
+
'min_sizes': [[16, 32], [64, 128], [256, 512]],
|
| 34 |
+
'steps': [8, 16, 32],
|
| 35 |
+
'variance': [0.1, 0.2],
|
| 36 |
+
'clip': False,
|
| 37 |
+
'loc_weight': 2.0,
|
| 38 |
+
'gpu_train': True,
|
| 39 |
+
'batch_size': 32,
|
| 40 |
+
'ngpu': 1,
|
| 41 |
+
'epoch': 250,
|
| 42 |
+
'decay1': 190,
|
| 43 |
+
'decay2': 220,
|
| 44 |
+
'image_size': 640,
|
| 45 |
+
'pretrain': False,
|
| 46 |
+
'return_layers': {'stage1': 1, 'stage2': 2, 'stage3': 3},
|
| 47 |
+
'in_channel': 32,
|
| 48 |
+
'out_channel': 64
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
resnet_cfg = {
|
| 52 |
+
'name': 'Resnet50',
|
| 53 |
+
'min_sizes': [[16, 32], [64, 128], [256, 512]],
|
| 54 |
+
'steps': [8, 16, 32],
|
| 55 |
+
'variance': [0.1, 0.2],
|
| 56 |
+
'clip': False,
|
| 57 |
+
'loc_weight': 2.0,
|
| 58 |
+
'gpu_train': True,
|
| 59 |
+
'batch_size': 24,
|
| 60 |
+
'ngpu': 4,
|
| 61 |
+
'epoch': 100,
|
| 62 |
+
'decay1': 70,
|
| 63 |
+
'decay2': 90,
|
| 64 |
+
'image_size': 840,
|
| 65 |
+
'pretrain': False,
|
| 66 |
+
'return_layers': {'layer2': 1, 'layer3': 2, 'layer4': 3},
|
| 67 |
+
'in_channel': 256,
|
| 68 |
+
'out_channel': 256
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
# Load MobileNet model
|
| 72 |
mobilenet_model = RetinaFace(cfg=mobilenet_cfg, phase='test')
|
| 73 |
mobilenet_model.load_state_dict(torch.load('mobilenet0.25_Final.pth', map_location=device))
|
|
|
|
| 80 |
resnet_model.eval()
|
| 81 |
resnet_model = resnet_model.to(device)
|
| 82 |
|
| 83 |
+
print("β
Models loaded successfully!")
|
| 84 |
+
return True
|
| 85 |
|
| 86 |
except Exception as e:
|
| 87 |
+
print(f"β Error loading models: {e}")
|
| 88 |
+
return False
|
|
|
|
| 89 |
|
| 90 |
+
def detect_faces(image, model_type="mobilenet", confidence_threshold=0.5, nms_threshold=0.4):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
"""Core face detection function"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
try:
|
| 93 |
+
start_time = time.time()
|
|
|
|
|
|
|
| 94 |
|
| 95 |
+
# Choose model
|
| 96 |
+
if model_type == "resnet":
|
| 97 |
model = resnet_model
|
| 98 |
+
cfg = {
|
| 99 |
+
'min_sizes': [[16, 32], [64, 128], [256, 512]],
|
| 100 |
+
'steps': [8, 16, 32],
|
| 101 |
+
'variance': [0.1, 0.2],
|
| 102 |
+
'clip': False,
|
| 103 |
+
'image_size': 840
|
| 104 |
+
}
|
| 105 |
else:
|
| 106 |
model = mobilenet_model
|
| 107 |
+
cfg = {
|
| 108 |
+
'min_sizes': [[16, 32], [64, 128], [256, 512]],
|
| 109 |
+
'steps': [8, 16, 32],
|
| 110 |
+
'variance': [0.1, 0.2],
|
| 111 |
+
'clip': False,
|
| 112 |
+
'image_size': 640
|
| 113 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
+
if model is None:
|
| 116 |
+
return None, "Models not loaded"
|
| 117 |
+
|
| 118 |
+
# Convert PIL to numpy array
|
| 119 |
+
if isinstance(image, Image.Image):
|
| 120 |
+
image = np.array(image)
|
| 121 |
+
|
| 122 |
+
# Preprocessing
|
| 123 |
+
img = np.float32(image)
|
| 124 |
+
im_height, im_width, _ = img.shape
|
| 125 |
+
scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
|
| 126 |
+
img -= (104, 117, 123)
|
| 127 |
+
img = img.transpose(2, 0, 1)
|
| 128 |
+
img = torch.from_numpy(img).unsqueeze(0)
|
| 129 |
+
img = img.to(device)
|
| 130 |
+
scale = scale.to(device)
|
| 131 |
|
| 132 |
+
# Forward pass
|
| 133 |
+
with torch.no_grad():
|
| 134 |
+
loc, conf, landms = model(img)
|
| 135 |
+
|
| 136 |
+
# Generate priors
|
| 137 |
+
priorbox = PriorBox(cfg, image_size=(im_height, im_width))
|
| 138 |
+
priors = priorbox.forward()
|
| 139 |
+
priors = priors.to(device)
|
| 140 |
+
prior_data = priors.data
|
| 141 |
+
boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance'])
|
| 142 |
+
boxes = boxes * scale
|
| 143 |
+
boxes = boxes.cpu().numpy()
|
| 144 |
+
scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
|
| 145 |
+
landms = decode_landm(landms.data.squeeze(0), prior_data, cfg['variance'])
|
| 146 |
+
scale1 = torch.Tensor([img.shape[3], img.shape[2], img.shape[3], img.shape[2],
|
| 147 |
+
img.shape[3], img.shape[2], img.shape[3], img.shape[2],
|
| 148 |
+
img.shape[3], img.shape[2]])
|
| 149 |
+
scale1 = scale1.to(device)
|
| 150 |
+
landms = landms * scale1
|
| 151 |
+
landms = landms.cpu().numpy()
|
| 152 |
+
|
| 153 |
+
# Ignore low scores
|
| 154 |
+
inds = np.where(scores > confidence_threshold)[0]
|
| 155 |
+
boxes = boxes[inds]
|
| 156 |
+
landms = landms[inds]
|
| 157 |
+
scores = scores[inds]
|
| 158 |
+
|
| 159 |
+
# Keep top-K before NMS
|
| 160 |
+
order = scores.argsort()[::-1][:5000]
|
| 161 |
+
boxes = boxes[order]
|
| 162 |
+
landms = landms[order]
|
| 163 |
+
scores = scores[order]
|
| 164 |
+
|
| 165 |
+
# Apply NMS
|
| 166 |
+
dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
|
| 167 |
+
keep = py_cpu_nms(dets, nms_threshold)
|
| 168 |
+
dets = dets[keep, :]
|
| 169 |
+
landms = landms[keep]
|
| 170 |
+
|
| 171 |
+
# Draw results
|
| 172 |
+
result_image = Image.fromarray(image)
|
| 173 |
+
draw = ImageDraw.Draw(result_image)
|
| 174 |
+
|
| 175 |
+
faces = []
|
| 176 |
+
for b, landmarks in zip(dets, landms):
|
| 177 |
+
if b[4] < confidence_threshold:
|
| 178 |
+
continue
|
| 179 |
+
|
| 180 |
+
# Draw bounding box
|
| 181 |
+
draw.rectangle([b[0], b[1], b[2], b[3]], outline="red", width=2)
|
| 182 |
+
|
| 183 |
+
# Draw confidence score
|
| 184 |
+
draw.text((b[0], b[1] - 15), f'{b[4]:.2f}', fill="red")
|
| 185 |
+
|
| 186 |
+
# Draw landmarks
|
| 187 |
+
for i in range(0, 10, 2):
|
| 188 |
+
draw.ellipse([landmarks[i]-2, landmarks[i+1]-2, landmarks[i]+2, landmarks[i+1]+2], fill="blue")
|
| 189 |
+
|
| 190 |
+
faces.append({
|
| 191 |
+
"bbox": {"x1": float(b[0]), "y1": float(b[1]), "x2": float(b[2]), "y2": float(b[3])},
|
| 192 |
+
"confidence": float(b[4]),
|
| 193 |
+
"landmarks": {
|
| 194 |
+
"left_eye": [float(landmarks[0]), float(landmarks[1])],
|
| 195 |
+
"right_eye": [float(landmarks[2]), float(landmarks[3])],
|
| 196 |
+
"nose": [float(landmarks[4]), float(landmarks[5])],
|
| 197 |
+
"left_mouth": [float(landmarks[6]), float(landmarks[7])],
|
| 198 |
+
"right_mouth": [float(landmarks[8]), float(landmarks[9])]
|
| 199 |
+
}
|
| 200 |
+
})
|
| 201 |
|
| 202 |
+
processing_time = time.time() - start_time
|
|
|
|
| 203 |
|
| 204 |
+
result_text = f"""
|
| 205 |
+
**Detection Results:**
|
| 206 |
+
- **Faces Detected:** {len(faces)}
|
| 207 |
+
- **Model Used:** {model_type}
|
| 208 |
+
- **Processing Time:** {processing_time:.3f}s
|
| 209 |
+
- **Confidence Threshold:** {confidence_threshold}
|
| 210 |
+
- **NMS Threshold:** {nms_threshold}
|
| 211 |
+
"""
|
| 212 |
|
| 213 |
+
return result_image, result_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
|
| 215 |
except Exception as e:
|
| 216 |
+
return None, f"Error: {str(e)}"
|
| 217 |
|
| 218 |
# Load models on startup
|
| 219 |
print("Loading RetinaFace models...")
|
| 220 |
+
model_loaded = load_models()
|
| 221 |
|
| 222 |
+
# Create simple Gradio interface
|
| 223 |
+
def create_interface():
|
| 224 |
+
with gr.Blocks(title="RetinaFace Face Detection") as demo:
|
| 225 |
+
gr.Markdown("# π₯ RetinaFace Face Detection API")
|
| 226 |
+
gr.Markdown("Real-time face detection using RetinaFace with MobileNet and ResNet backbones")
|
| 227 |
+
|
| 228 |
+
if model_loaded:
|
| 229 |
+
gr.Markdown("β
**Status**: Models loaded successfully!")
|
| 230 |
+
else:
|
| 231 |
+
gr.Markdown("β **Status**: Error loading models")
|
| 232 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
with gr.Row():
|
| 234 |
with gr.Column():
|
| 235 |
input_image = gr.Image(type="pil", label="Upload Image")
|
| 236 |
model_choice = gr.Dropdown(
|
| 237 |
choices=["mobilenet", "resnet"],
|
| 238 |
value="mobilenet",
|
| 239 |
+
label="Model"
|
| 240 |
)
|
| 241 |
+
confidence = gr.Slider(
|
| 242 |
minimum=0.1, maximum=1.0, value=0.5, step=0.1,
|
| 243 |
+
label="Confidence"
|
| 244 |
)
|
| 245 |
+
nms = gr.Slider(
|
| 246 |
minimum=0.1, maximum=1.0, value=0.4, step=0.1,
|
| 247 |
label="NMS Threshold"
|
| 248 |
)
|
| 249 |
detect_btn = gr.Button("π Detect Faces", variant="primary")
|
| 250 |
|
| 251 |
with gr.Column():
|
| 252 |
+
output_image = gr.Image(label="Results")
|
| 253 |
+
output_text = gr.Markdown()
|
| 254 |
|
| 255 |
detect_btn.click(
|
| 256 |
+
fn=detect_faces,
|
| 257 |
+
inputs=[input_image, model_choice, confidence, nms],
|
| 258 |
+
outputs=[output_image, output_text]
|
| 259 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
|
| 261 |
+
gr.Markdown("""
|
| 262 |
+
## API Usage
|
| 263 |
+
Use `/api/predict` endpoint with:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
```json
|
| 265 |
{
|
| 266 |
+
"data": [image, "mobilenet", 0.5, 0.4]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
}
|
| 268 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
""")
|
| 270 |
|
| 271 |
+
return demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
|
| 273 |
+
# Create and launch the interface
|
| 274 |
+
demo = create_interface()
|
|
|
|
|
|
|
|
|
|
| 275 |
|
|
|
|
| 276 |
if __name__ == "__main__":
|
| 277 |
demo.launch(
|
| 278 |
server_name="0.0.0.0",
|
| 279 |
server_port=7860,
|
| 280 |
+
share=True
|
|
|
|
| 281 |
)
|
requirements.txt
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
gradio==4.
|
| 2 |
torch==2.0.1
|
| 3 |
torchvision==0.15.2
|
| 4 |
opencv-python==4.8.1.78
|
|
|
|
| 1 |
+
gradio==4.36.0
|
| 2 |
torch==2.0.1
|
| 3 |
torchvision==0.15.2
|
| 4 |
opencv-python==4.8.1.78
|