import streamlit as st import pandas as pd import joblib import numpy as np # Load the trained model @st.cache_resource def load_model(): return joblib.load("rental_price_prediction_model_v1_0.joblib") model = load_model() # Streamlit UI for Price Prediction st.title("Airbnb Rental Price Prediction App") st.write("This tool predicts the price of an Airbnb listing based on the property details.") st.subheader("Enter the listing details:") # Collect user input room_type = st.selectbox("Room Type", ["Entire home/apt", "Private room", "Shared room"]) accommodates = st.number_input("Accommodates (Number of guests)", min_value=1, value=2) bathrooms = st.number_input("Bathrooms", min_value=1, step=1, value=2) cancellation_policy = st.selectbox("Cancellation Policy (kind of cancellation policy)", ["strict", "flexible", "moderate"]) cleaning_fee = st.selectbox("Cleaning Fee Charged?", ["True", "False"]) instant_bookable = st.selectbox("Instantly Bookable?", ["False", "True"]) review_scores_rating = st.number_input("Review Score Rating", min_value=0.0, max_value=100.0, step=1.0, value=90.0) bedrooms = st.number_input("Bedrooms", min_value=0, step=1, value=1) beds = st.number_input("Beds", min_value=0, step=1, value=1) # Convert user input into a DataFrame input_data = pd.DataFrame([{ 'room_type': room_type, 'accommodates': accommodates, 'bathrooms': bathrooms, 'cancellation_policy': cancellation_policy, 'cleaning_fee': cleaning_fee, 'instant_bookable': 'f' if instant_bookable=="False" else "t", 'review_scores_rating': review_scores_rating, 'bedrooms': bedrooms, 'beds': beds }]) # Predict button if st.button("Predict"): prediction = model.predict(input_data) st.write(f"The predicted price of the rental property is ${np.exp(prediction)[0]:.2f}.")