Spaces:
Sleeping
Sleeping
Commit
·
a04211d
1
Parent(s):
4cd25ce
Initial version
Browse files- app.py +67 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import pmdarima as pm
|
| 4 |
+
from pmdarima import auto_arima
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
|
| 7 |
+
def forecast_time_series(file):
|
| 8 |
+
# Load data
|
| 9 |
+
data = pd.read_csv(file.name, skiprows=2)
|
| 10 |
+
period_type = data.columns[0]
|
| 11 |
+
data[period_type] = pd.to_datetime(data[period_type])
|
| 12 |
+
data.set_index(period_type, inplace=True)
|
| 13 |
+
|
| 14 |
+
# Fit the SARIMAX model automatically
|
| 15 |
+
model = auto_arima(data)
|
| 16 |
+
|
| 17 |
+
# Forecasting
|
| 18 |
+
n_periods = 24 # Number of periods to forecast
|
| 19 |
+
forecast, conf_int = model.predict(n_periods=n_periods, return_conf_int=True)
|
| 20 |
+
|
| 21 |
+
# Create a DataFrame with the forecast and confidence intervals
|
| 22 |
+
forecast_index = pd.date_range(start=data.index[-1], periods=n_periods + 1, freq=data.index.inferred_freq)[1:]
|
| 23 |
+
forecast_df = pd.DataFrame(forecast, index=forecast_index, columns=['Forecast'])
|
| 24 |
+
conf_int_df = pd.DataFrame(conf_int, index=forecast_index, columns=['Lower CI', 'Upper CI'])
|
| 25 |
+
forecast_df = pd.concat([forecast_df, conf_int_df], axis=1)
|
| 26 |
+
|
| 27 |
+
# Calculate the YoY change
|
| 28 |
+
sum_last_12_original = data.iloc[-12:, 0].sum()
|
| 29 |
+
sum_first_12_forecast = forecast_df['Forecast'].iloc[:12].sum()
|
| 30 |
+
yoy_change = (sum_first_12_forecast - sum_last_12_original) / sum_last_12_original
|
| 31 |
+
|
| 32 |
+
# Plot the original time series and forecast
|
| 33 |
+
plt.figure(figsize=(12, 6))
|
| 34 |
+
plt.plot(data.index, data.iloc[:, 0], label='Original Series')
|
| 35 |
+
plt.plot(forecast_df.index, forecast_df['Forecast'], color='red', label='Forecast')
|
| 36 |
+
plt.fill_between(forecast_df.index,
|
| 37 |
+
forecast_df['Lower CI'],
|
| 38 |
+
forecast_df['Upper CI'],
|
| 39 |
+
color='pink', alpha=0.3, label='Confidence Interval')
|
| 40 |
+
plt.xlabel('Date')
|
| 41 |
+
plt.ylabel('Values')
|
| 42 |
+
plt.title('Original Time Series and Forecast with Confidence Intervals')
|
| 43 |
+
plt.legend()
|
| 44 |
+
|
| 45 |
+
# Save plot to a file
|
| 46 |
+
plot_file = 'forecast_plot.png'
|
| 47 |
+
plt.savefig(plot_file)
|
| 48 |
+
plt.close()
|
| 49 |
+
|
| 50 |
+
# Return plot file path and YoY change
|
| 51 |
+
return plot_file, f'Year-over-Year Change in Sum of Values: {yoy_change:.2%}'
|
| 52 |
+
|
| 53 |
+
# Create Gradio interface
|
| 54 |
+
interface = gr.Interface(
|
| 55 |
+
theme=gr.themes.Monochrome(),
|
| 56 |
+
fn=forecast_time_series,
|
| 57 |
+
inputs=gr.File(label="Upload Time Series CSV"),
|
| 58 |
+
outputs=[
|
| 59 |
+
gr.Image(label="Time Series + Forecast Chart"),
|
| 60 |
+
gr.Text(label="YoY % Change")
|
| 61 |
+
],
|
| 62 |
+
title="Time Series Forecasting with SARIMAX",
|
| 63 |
+
description="Upload a CSV file with a time series to forecast the next 12 periods and see the YoY % change."
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
# Launch the interface
|
| 67 |
+
interface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
pandas
|
| 3 |
+
pmdarima
|
| 4 |
+
matplotlib
|