Spaces:
Sleeping
Sleeping
File size: 6,375 Bytes
5741afc b8e2d49 5741afc b8e2d49 5741afc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import os
import re
from flask import Flask, request, jsonify, send_from_directory
from flask import Flask, render_template
from flask_cors import CORS
from dotenv import load_dotenv
import googleapiclient.discovery
import googleapiclient.errors
# Final Upgrade: Using a RoBERTa model trained on Twitter data for maximum slang/context accuracy
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
# --- Setup ---
app = Flask(__name__)
CORS(app)
load_dotenv()
API_KEY = os.getenv("YOUTUBE_API_KEY")
if not API_KEY:
raise ValueError("YOUTUBE_API_KEY not found in .env file. Please create a .env file and add your key.")
# --- State-of-the-Art AI Model Loading (Twitter Emotion) ---
# This model is one of the best for understanding slang and informal text.
# The model will be downloaded on the first run.
print("Loading Twitter-trained RoBERTa model for emotion classification...")
MODEL = "cardiffnlp/twitter-roberta-base-emotion-latest"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
emotion_pipeline = pipeline("text-classification", model=model, tokenizer=tokenizer, top_k=None)
print("Model loaded successfully.")
# --- Serve Frontend ---
@app.route("/")
def serve_index():
return render_template("index.html")
# --- Helper Function ---
def extract_video_id(url):
"""Extracts the YouTube video ID from various common URL formats."""
patterns = [
r"(?:https?:\/\/)?(?:www\.)?youtube\.com\/watch\?v=([a-zA-Z0-9_-]{11})",
r"(?:https?:\/\/)?(?:www\.)?youtu\.be\/([a-zA-Z0-9_-]{11})",
r"(?:https?:\/\/)?(?:www\.)?youtube\.com\/embed\/([a-zA-Z0-9_-]{11})",
]
for pattern in patterns:
match = re.search(pattern, url)
if match:
return match.group(1)
return None
# --- API Endpoint ---
@app.route("/analyze", methods=["POST"])
def analyze_comments():
"""
API endpoint that receives a YouTube URL, fetches up to 700 comments,
performs detailed emotion analysis, and returns a comprehensive JSON response.
"""
data = request.get_json()
if not data or "youtube_url" not in data:
return jsonify({"error": "youtube_url is required"}), 400
video_url = data["youtube_url"]
video_id = extract_video_id(video_url)
if not video_id:
return jsonify({"error": "Invalid YouTube URL"}), 400
try:
youtube = googleapiclient.discovery.build(
"youtube", "v3", developerKey=API_KEY
)
video_request = youtube.videos().list(part="snippet", id=video_id)
video_response = video_request.execute()
if not video_response.get("items"):
return jsonify({"error": "Video not found."}), 404
video_snippet = video_response["items"][0]["snippet"]
video_details = {
"title": video_snippet["title"],
"thumbnail_url": video_snippet["thumbnails"]["medium"]["url"]
}
all_comments = []
next_page_token = None
for _ in range(7): # Fetch up to 700 comments
comment_request = youtube.commentThreads().list(
part="snippet", videoId=video_id, maxResults=100,
textFormat="plainText", pageToken=next_page_token
)
comment_response = comment_request.execute()
for item in comment_response.get("items", []):
comment_text = item["snippet"]["topLevelComment"]["snippet"]["textDisplay"]
# Filter out very short, non-meaningful comments
if len(comment_text.split()) > 2:
all_comments.append(comment_text)
next_page_token = comment_response.get("nextPageToken")
if not next_page_token:
break
if not all_comments:
return jsonify({
"error": "No meaningful comments found or comments are disabled for this video.",
"video_details": video_details
}), 200
# This model outputs: anger, joy, optimism, sadness
emotion_labels = ["anger", "joy", "optimism", "sadness"]
emotions = {label: 0 for label in emotion_labels}
comment_analysis = []
batch_size = 16
for i in range(0, len(all_comments), batch_size):
batch = all_comments[i:i + batch_size]
results = emotion_pipeline(batch, truncation=True) if batch else []
for j, result in enumerate(results):
comment_text = batch[j]
top_emotion = result[0]
label = top_emotion['label']
score = top_emotion['score']
comment_analysis.append({"text": comment_text, "label": label, "score": score})
if label in emotions:
emotions[label] += 1
comment_analysis.sort(key=lambda x: x["score"], reverse=True)
top_comments_by_emotion = {label: [] for label in emotion_labels}
for comment in comment_analysis:
label = comment['label']
if label in top_comments_by_emotion and len(top_comments_by_emotion[label]) < 2:
top_comments_by_emotion[label].append(comment['text'])
response_data = {
"emotions": emotions,
"video_details": video_details,
"top_comments_by_emotion": top_comments_by_emotion,
"total_comments_analyzed": len(all_comments)
}
return jsonify(response_data), 200
except googleapiclient.errors.HttpError as e:
try:
error_details = e.error_details[0]
if error_details["reason"] == "commentsDisabled":
return jsonify({
"error": "Comments are disabled for this video.",
"video_details": video_details
}), 200
except (AttributeError, IndexError):
pass
print(f"An API error occurred: {e}")
return jsonify({"error": "Could not retrieve comments. Please check the video URL and API key."}), 400
except Exception as e:
print(f"An unexpected error occurred: {e}")
return jsonify({"error": "An internal server error occurred."}), 500
if __name__ == "__main__":
app.run(port=5000, debug=True)
|