File size: 24,496 Bytes
ca2c89c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import nltk
from collections import Counter
import networkx as nx
from nltk.corpus import stopwords
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.stem import WordNetLemmatizer
import re
from sklearn.feature_extraction.text import TfidfVectorizer
from matplotlib_venn import venn2

from utils.model_loader import load_summarizer
from utils.helpers import fig_to_html, df_to_html_table

def summarization_handler(text_input, min_length=30, max_length=300, use_sampling=False):
    """Show text summarization capabilities."""
    output_html = []
    
    # Add result area container
    output_html.append('<div class="result-area">')
    output_html.append('<h2 class="task-header">Text Summarization</h2>')
    
    output_html.append("""

    <div class="alert alert-info">

    <i class="fas fa-info-circle"></i>

    Text summarization condenses text to capture its main points, enabling quicker comprehension of large volumes of information.

    </div>

    """)
    
    # Model info
    output_html.append("""

    <div class="alert alert-info">

        <h4><i class="fas fa-tools"></i> Models & Techniques Used:</h4>

        <ul>

            <li><b>Extractive Summarization</b> - Selects important sentences from the original text</li>

            <li><b>Abstractive Summarization</b> - BART model fine-tuned on CNN/DM dataset to generate new summary text</li>

            <li><b>Performance</b> - ROUGE scores of approximately 40-45 on CNN/DM benchmark</li>

        </ul>

    </div>

    """)
    
    try:
        # Check if text is long enough for summarization
        sentences = nltk.sent_tokenize(text_input)
        word_count = len(text_input.split())
        
        if len(sentences) < 3 or word_count < 40:
            output_html.append(f"""

            <div class="alert alert-warning">

                <h3>Text Too Short for Summarization</h3>

                <p>The provided text contains only {len(sentences)} sentences and {word_count} words. 

                For effective summarization, please provide a longer text (at least 3 sentences and 40 words).</p>

            </div>

            """)
        else:
            # Original Text Section
            output_html.append('<h3 class="task-subheader">Original Text</h3>')
            output_html.append(f"""

            <div class="card">

                <div class="card-body">

                    <div class="text-content" style="word-wrap: break-word; word-break: break-word; overflow-wrap: break-word; max-height: 500px; overflow-y: auto; padding: 15px; background-color: #f8f9fa; border-radius: 5px; border: 1px solid #e9ecef; line-height: 1.6;">{text_input}</div>

                </div>

            </div>

            <p>Length: {word_count} words.</p>

            """)
            
            # Text Statistics
            char_count = len(text_input)
            avg_sentence_length = word_count / len(sentences)
            avg_word_length = sum(len(word) for word in text_input.split()) / word_count
            
            # Neural Summarization Section
            output_html.append('<h3 class="task-subheader">Neural Abstractive Summarization</h3>')
            output_html.append('<p>Using BART model to generate a human-like summary</p>')
            
            # Parameter summary
            output_html.append(f"""

            <div class="alert alert-light">

                <span><strong>Parameters:</strong> Min Length: {min_length} | Max Length: {max_length} | Sampling: {'Enabled' if use_sampling else 'Disabled'}</span>

            </div>

            """)
            
            try:
                # Load summarizer model
                summarizer = load_summarizer()
                
                if summarizer is None:
                    output_html.append("""

                    <div class="alert alert-danger">

                        <p>Failed to load the abstractive summarization model. This may be due to memory constraints or missing dependencies.</p>

                    </div>

                    """)
                else:
                    # Check length limitations
                    max_token_limit = 1024  # BART typically has 1024 token limit
                    
                    # If text is too long, warn user and truncate
                    if word_count > max_token_limit:
                        output_html.append(f"""

                        <div class="alert alert-warning">

                            <p><b>⚠️ Note:</b> Text exceeds model's length limit. Only the first ~{max_token_limit} tokens will be used for summarization.</p>

                        </div>

                        """)
                    
                    # Generate summary using the specified min_length and max_length
                    abstractive_results = summarizer(
                        text_input, 
                        max_length=max_length,
                        min_length=min_length,
                        do_sample=use_sampling,
                        temperature=0.7 if use_sampling else 1.0,
                        top_p=0.9 if use_sampling else 1.0,
                        length_penalty=2.0
                    )
                    
                    abstractive_summary = abstractive_results[0]['summary_text']
                    
                    # Calculate reduction statistics
                    abstractive_word_count = len(abstractive_summary.split())
                    abstractive_reduction = (1 - abstractive_word_count / word_count) * 100
                    
                    # Summary Results
                    output_html.append(f"""

                    <div class="card">

                        <div class="card-header">

                            <h4 class="mb-0">Neural Summary</h4>

                        </div>

                        <div class="card-body">

                            <div style="line-height: 1.6;">

                                {abstractive_summary}

                            </div>

                        </div>

                    </div>

                    

                    <div class="row mt-3">

                        <div class="col-md-4">

                            <div class="card text-center">

                                <div class="card-body">

                                    <h5 class="text-muted">Original Length</h5>

                                    <h3 class="text-primary">{word_count} words</h3>

                                </div>

                            </div>

                        </div>

                        <div class="col-md-4">

                            <div class="card text-center">

                                <div class="card-body">

                                    <h5 class="text-muted">Summary Length</h5>

                                    <h3 class="text-success">{abstractive_word_count} words</h3>

                                </div>

                            </div>

                        </div>

                        <div class="col-md-4">

                            <div class="card text-center">

                                <div class="card-body">

                                    <h5 class="text-muted">Compression</h5>

                                    <h3 class="text-info">{abstractive_reduction:.1f}%</h3>

                                </div>

                            </div>

                        </div>

                    </div>

                    """)
                    
                    # Key Terms & Topics Section
                    output_html.append('<h3 class="task-subheader">Key Topics & Terms</h3>')
                    
                    # Extract key terms with TF-IDF
                    key_terms = extract_key_terms(text_input, n=10)
                    
                    # Create layout stacked vertically: table first, then chart
                    output_html.append('<div class="row">')
                    
                    # Row 1: Key terms table (full width)
                    output_html.append('<div class="col-12">')
                    output_html.append('<h4>Key Terms</h4>')
                    
                    # Create key terms table
                    terms_df = pd.DataFrame({
                        '#': range(1, len(key_terms) + 1),
                        'Keyword': [term[0] for term in key_terms],
                        'TF-IDF Score': [f"{term[1]:.4f}" for term in key_terms]
                    })
                    
                    output_html.append(df_to_html_table(terms_df))
                    output_html.append('</div>')  # Close row 1 column
                    output_html.append('</div>')  # Close row 1
                    
                    # Row 2: Term importance chart (full width)
                    output_html.append('<div class="row mt-3">')
                    output_html.append('<div class="col-12">')
                    output_html.append('<h4>Term Importance</h4>')
                    
                    # Create horizontal bar chart of key terms
                    fig = plt.figure(figsize=(10, 8))
                    
                    # Reverse the order for bottom-to-top display
                    terms = [term[0] for term in key_terms]
                    scores = [term[1] for term in key_terms]
                    
                    # Sort by score for better visualization
                    sorted_data = sorted(zip(terms, scores), key=lambda x: x[1])
                    terms = [x[0] for x in sorted_data]
                    scores = [x[1] for x in sorted_data]
                    
                    # Create horizontal bar chart
                    plt.barh(terms, scores, color='#1976D2')
                    plt.xlabel('TF-IDF Score')
                    plt.ylabel('Keyword')
                    plt.title('Key Terms by TF-IDF Score')
                    plt.tight_layout()
                    
                    output_html.append(fig_to_html(fig))
                    
                    output_html.append('</div>')  # Close row 2 column
                    output_html.append('</div>')  # Close row 2
            
            except Exception as e:
                output_html.append(f"""

                <div class="alert alert-danger">

                    <h4>Abstractive Summarization Error</h4>

                    <p>Failed to perform abstractive summarization: {str(e)}</p>

                </div>

                """)
            
            # Extractive Summarization
            output_html.append('<h3 class="task-subheader">Extractive Summarization</h3>')
            output_html.append("""

            <div class="alert alert-light">

                <p class="mb-0">

                Extractive summarization works by identifying important sentences in the text and extracting them to form a summary.

                This implementation uses a variant of the TextRank algorithm, which is based on Google's PageRank.

                </p>

            </div>

            """)
            
            # Perform TextRank Summarization
            extractive_summary = textrank_summarize(text_input, num_sentences=min(3, max(1, len(sentences) // 3)))
            
            # Clean up the placeholder separator
            extractive_summary = extractive_summary.replace("SENTBREAKOS.OS", " ")
            
            # Calculate reduction statistics
            extractive_word_count = len(extractive_summary.split())
            extractive_reduction = (1 - extractive_word_count / word_count) * 100
            
            output_html.append(f"""

            <div class="alert alert-success">

                <h4>Extractive Summary ({extractive_reduction:.1f}% reduction)</h4>

                <div style="line-height: 1.6;">

                    {extractive_summary}

                </div>

            </div>

            """)
            
            # Sentence importance visualization
            output_html.append('<h4>Sentence Importance</h4>')
            output_html.append('<p>The graph below shows the relative importance of each sentence based on the TextRank algorithm:</p>')
            
            # Get sentence scores from TextRank
            sentence_scores = textrank_sentence_scores(text_input)
            
            # Sort sentences by their original order
            sentence_items = list(sentence_scores.items())
            sentence_items.sort(key=lambda x: int(x[0].split('_')[1]))
            
            # Create visualization
            fig = plt.figure(figsize=(10, 6))
            bars = plt.bar(
                [f"Sent {item[0].split('_')[1]}" for item in sentence_items], 
                [item[1] for item in sentence_items], 
                color='#1976D2'
            )
            
            # Highlight selected sentences
            selected_indices = [int(idx.split('_')[1]) for idx in sentence_scores.keys() if idx in extractive_summary.split('SENTBREAKOS.OS')]
            for i, bar in enumerate(bars):
                if i+1 in selected_indices:
                    bar.set_color('#4CAF50')
                    plt.text(bar.get_x() + bar.get_width()/2, bar.get_height() + 0.02,
                           'Selected', ha='center', va='bottom', fontsize=8, rotation=90)
            
            plt.xlabel('Sentence')
            plt.ylabel('Importance Score')
            plt.title('Sentence Importance Based on TextRank')
            plt.xticks(rotation=45)
            plt.tight_layout()
            
            output_html.append(fig_to_html(fig))
            
            # Compare the two approaches
            output_html.append('<h3 class="task-subheader">Summary Comparison</h3>')
            
            # Calculate overlap between summaries
            extractive_words = set(re.findall(r'\b\w+\b', extractive_summary.lower()))
            abstractive_words = set(re.findall(r'\b\w+\b', abstractive_summary.lower()))
            common_words = extractive_words.intersection(abstractive_words)
            
            if len(extractive_words) > 0 and len(abstractive_words) > 0:
                overlap_percentage = len(common_words) / ((len(extractive_words) + len(abstractive_words)) / 2) * 100
            else:
                overlap_percentage = 0
            
            # Create comparison table
            comparison_data = {
                'Metric': ['Word Count', 'Reduction %', 'Sentences', 'Words per Sentence', 'Unique Words'],
                'Extractive': [
                    extractive_word_count,
                    f"{extractive_reduction:.1f}%",
                    len(nltk.sent_tokenize(extractive_summary)),
                    f"{extractive_word_count / max(1, len(nltk.sent_tokenize(extractive_summary))):.1f}",
                    len(extractive_words)
                ],
                'Abstractive': [
                    abstractive_word_count,
                    f"{abstractive_reduction:.1f}%",
                    len(nltk.sent_tokenize(abstractive_summary)),
                    f"{abstractive_word_count / max(1, len(nltk.sent_tokenize(abstractive_summary))):.1f}",
                    len(abstractive_words)
                ]
            }
            
            comparison_df = pd.DataFrame(comparison_data)
            
            output_html.append('<div class="row">')
            
            # Column 1: Comparison table
            output_html.append('<div class="col-md-6">')
            output_html.append('<h4>Summary Statistics</h4>')
            output_html.append(df_to_html_table(comparison_df))
            output_html.append('</div>')
            
            # Column 2: Venn diagram of word overlap
            output_html.append('<div class="col-md-6">')
            output_html.append('<h4>Word Overlap Visualization</h4>')
            
            # Create Venn diagram
            fig = plt.figure(figsize=(8, 6))
            venn = venn2(
                subsets=(
                    len(extractive_words - abstractive_words),
                    len(abstractive_words - extractive_words),
                    len(common_words)
                ),
                set_labels=('Extractive', 'Abstractive')
            )
            
            # Set colors
            venn.get_patch_by_id('10').set_color('#4CAF50')
            venn.get_patch_by_id('01').set_color('#03A9F4')
            venn.get_patch_by_id('11').set_color('#9C27B0')
            
            plt.title('Word Overlap Between Summaries')
            plt.text(0, -0.25, f"Overlap: {overlap_percentage:.1f}%", ha='center')
            
            output_html.append(fig_to_html(fig))
            
            # Show key shared and unique words
            shared_words_list = list(common_words)
            extractive_only = list(extractive_words - abstractive_words)
            abstractive_only = list(abstractive_words - extractive_words)
            
            # Limit the number of words shown
            max_words = 10
            
            output_html.append(f"""

            <div class="mt-3">

                <h5>Key Shared Words ({min(max_words, len(shared_words_list))} of {len(shared_words_list)})</h5>

                <div class="d-flex flex-wrap gap-1 mb-2">

                    {' '.join([f'<span class="badge bg-primary">{word}</span>' for word in shared_words_list[:max_words]])}

                </div>

                

                <h5>Unique to Extractive ({min(max_words, len(extractive_only))} of {len(extractive_only)})</h5>

                <div class="d-flex flex-wrap gap-1 mb-2">

                    {' '.join([f'<span class="badge bg-success">{word}</span>' for word in extractive_only[:max_words]])}

                </div>

                

                <h5>Unique to Abstractive ({min(max_words, len(abstractive_only))} of {len(abstractive_only)})</h5>

                <div class="d-flex flex-wrap gap-1 mb-2">

                    {' '.join([f'<span class="badge bg-info">{word}</span>' for word in abstractive_only[:max_words]])}

                </div>

            </div>

            """)
            
            output_html.append('</div>')  # Close column 2
            output_html.append('</div>')  # Close row
    
    except Exception as e:
        output_html.append(f"""

        <div class="alert alert-danger">

            <h3>Error</h3>

            <p>Failed to summarize text: {str(e)}</p>

        </div>

        """)
    
    # About Text Summarization section
    output_html.append("""

    <div class="card mt-4">

        <div class="card-header">

            <h4 class="mb-0">

                <i class="fas fa-info-circle"></i>

                About Text Summarization

            </h4>

        </div>

        <div class="card-body">

            <h5>What is Text Summarization?</h5>

            

            <p>Text summarization is the process of creating a shorter version of a text while preserving its key information

            and meaning. It helps users quickly grasp the main points without reading the entire document.</p>

            

            <h5>Two Main Approaches:</h5>

            

            <ul>

                <li><b>Extractive Summarization:</b> Selects and extracts existing sentences from the source text based on their importance</li>

                <li><b>Abstractive Summarization:</b> Generates new sentences that capture the meaning of the source text (similar to how humans write summaries)</li>

            </ul>

            

            <h5>Applications:</h5>

            

            <ul>

                <li><b>News digests</b> - Quick summaries of news articles</li>

                <li><b>Research papers</b> - Condensing long academic papers</li>

                <li><b>Legal documents</b> - Summarizing complex legal text</li>

                <li><b>Meeting notes</b> - Extracting key points from discussions</li>

                <li><b>Content curation</b> - Creating snippets for content recommendations</li>

            </ul>

        </div>

    </div>

    """)
    
    output_html.append('</div>')  # Close result-area div
    
    return '\n'.join(output_html)

def extract_key_terms(text, n=10):
    """Extract key terms using TF-IDF"""
    try:
        # Tokenize and preprocess
        stop_words = set(stopwords.words('english'))
        lemmatizer = WordNetLemmatizer()
        
        # Tokenize and clean text
        words = word_tokenize(text.lower())
        words = [lemmatizer.lemmatize(word) for word in words 
                if word.isalnum() and word not in stop_words and len(word) > 2]
        
        # Create document for TF-IDF
        document = [' '.join(words)]
        
        # Create TF-IDF vectorizer
        vectorizer = TfidfVectorizer(max_features=100)
        tfidf_matrix = vectorizer.fit_transform(document)
        
        # Get feature names and scores
        feature_names = vectorizer.get_feature_names_out()
        scores = tfidf_matrix.toarray()[0]
        
        # Create term-score pairs and sort by score
        term_scores = [(term, score) for term, score in zip(feature_names, scores)]
        term_scores.sort(key=lambda x: x[1], reverse=True)
        
        return term_scores[:n]
    except Exception as e:
        print(f"Error extracting key terms: {str(e)}")
        return [("term", 0.0) for _ in range(n)]  # Return empty placeholder

# TextRank extractive summarization algorithm
def textrank_summarize(text, num_sentences=3):
    """Generate an extractive summary using TextRank algorithm"""
    # Tokenize text into sentences
    sentences = sent_tokenize(text)
    
    # If text is too short, return the original text
    if len(sentences) <= num_sentences:
        return text
    
    # Build a graph of sentences with similarity edges
    sentence_scores = textrank_sentence_scores(text)
    
    # Sort sentences by score
    ranked_sentences = sorted([(score, i, s) for i, (s, score) in enumerate(zip(sentences, sentence_scores.values()))], reverse=True)
    
    # Select top sentences based on score
    selected_sentences = sorted(ranked_sentences[:num_sentences], key=lambda x: x[1])
    
    # Combine selected sentences
    summary = "SENTBREAKOS.OS".join([s[2] for s in selected_sentences])
    
    return summary

def textrank_sentence_scores(text):
    """Generate sentence scores using TextRank algorithm"""
    # Tokenize text into sentences
    sentences = sent_tokenize(text)
    
    # Create sentence IDs
    sentence_ids = [f"sentence_{i+1}" for i in range(len(sentences))]
    
    # Create sentence graph
    G = nx.Graph()
    
    # Add nodes
    for sentence_id in sentence_ids:
        G.add_node(sentence_id)
    
    # Remove stopwords and preprocess sentences
    stop_words = set(stopwords.words('english'))
    sentence_words = []
    
    for sentence in sentences:
        words = [word.lower() for word in word_tokenize(sentence) if word.lower() not in stop_words and word.isalnum()]
        sentence_words.append(words)
    
    # Add edges based on sentence similarity
    for i in range(len(sentence_ids)):
        for j in range(i+1, len(sentence_ids)):
            similarity = sentence_similarity(sentence_words[i], sentence_words[j])
            if similarity > 0:
                G.add_edge(sentence_ids[i], sentence_ids[j], weight=similarity)
    
    # Run PageRank
    scores = nx.pagerank(G)
    
    return scores

def sentence_similarity(words1, words2):
    """Calculate similarity between two sentences based on word overlap"""
    if not words1 or not words2:
        return 0
    
    # Convert to sets for intersection
    set1 = set(words1)
    set2 = set(words2)
    
    # Jaccard similarity
    intersection = len(set1.intersection(set2))
    union = len(set1.union(set2))
    
    if union == 0:
        return 0
    return intersection / union