Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
|
| 4 |
+
# Load the text classification model
|
| 5 |
+
classifier = pipeline('text-classification', model='ardavey/bert-large-depression-classification-model')
|
| 6 |
+
|
| 7 |
+
# Define a function for text classification
|
| 8 |
+
def classify_text(text):
|
| 9 |
+
predictions = classifier([text])
|
| 10 |
+
label = 'Depressed' if predictions[0]['label'] == 'LABEL_1' else 'Not Depressed'
|
| 11 |
+
score = predictions[0]['score']
|
| 12 |
+
return f"Prediction: {label}, Score: {score:.4f}"
|
| 13 |
+
|
| 14 |
+
# Create a Gradio interface
|
| 15 |
+
interface = gr.Interface(
|
| 16 |
+
fn=classify_text,
|
| 17 |
+
inputs=gr.Textbox(lines=5, placeholder="Enter your text here..."),
|
| 18 |
+
outputs="text",
|
| 19 |
+
title="Depression Text Classifier",
|
| 20 |
+
description="Enter a text sample to check for signs of depression."
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
# Launch the Gradio app
|
| 24 |
+
interface.launch()
|