File size: 8,530 Bytes
8e73cee
6ebefda
08eda6a
f9a373a
08eda6a
 
8e73cee
08eda6a
 
8e73cee
08eda6a
 
 
 
 
 
 
ac4b361
08eda6a
 
 
 
fe978b0
e74b4ec
 
 
 
08eda6a
 
 
 
 
 
 
 
 
 
 
 
 
6ebefda
 
 
 
 
 
 
b62fc3c
6ebefda
4e5901e
b5b08bf
 
 
08eda6a
 
 
 
 
 
b5b08bf
 
5a5710d
b5b08bf
08eda6a
b5b08bf
fe978b0
 
08eda6a
 
0872131
6fcd1dd
 
adaf4fa
6fcd1dd
ce29fa7
0872131
ce29fa7
 
 
 
 
 
 
 
08eda6a
 
 
 
 
 
 
935e931
08eda6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12c3d31
ce29fa7
08eda6a
 
 
 
 
ce29fa7
08eda6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe978b0
08eda6a
 
 
031b945
08eda6a
 
 
031b945
08eda6a
 
 
031b945
08eda6a
 
031b945
08eda6a
031b945
08eda6a
 
 
 
 
 
fe978b0
08eda6a
 
 
fe978b0
08eda6a
 
 
8e73cee
08eda6a
 
ac4b361
08eda6a
ac4b361
08eda6a
 
 
 
3acdbb1
08eda6a
 
 
 
 
3acdbb1
08eda6a
3acdbb1
08eda6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import os
import torchaudio
import gradio as gr
import spaces
import torch
from transformers import AutoProcessor, AutoModelForCTC

device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")

# load examples 
examples = []
examples_dir = "examples"
if os.path.exists(examples_dir):
    for filename in os.listdir(examples_dir):
        if filename.endswith((".wav", ".mp3", ".ogg")):
            examples.append([os.path.join(examples_dir, filename)])

# Load model and processor
MODEL_PATH = "badrex/JASRv1.1"
processor = AutoProcessor.from_pretrained(MODEL_PATH)
model = AutoModelForCTC.from_pretrained(MODEL_PATH)

# move model and processor to device
model = model.to(device)
#processor = processor.to(device)

@spaces.GPU()
def process_audio(audio_path):
    """Process audio with return the generated respotextnse.
    
    Args:
        audio_path: Path to the audio file to be transcribed.    
    Returns:
        String containing the transcribed text from the audio file, or an error message
        if the audio file is missing.
    """
    if not audio_path:
        return "Please upload an audio file."

    # get audio array
    audio_array, sample_rate = torchaudio.load(audio_path)

    # if sample rate is not 16000, resample to 16000
    if sample_rate != 16000:
        audio_array = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio_array)

    #audio_array = audio_array.to(device)

    inputs = processor(audio_array, sampling_rate=16000, return_tensors="pt")
    inputs = {k: v.to(device) for k, v in inputs.items()}

    #inputs = inputs.to(device, dtype=torch.bfloat16)

    with torch.no_grad():
        logits = model(**inputs).logits

    outputs = torch.argmax(logits, dim=-1)
    
    decoded_outputs = processor.batch_decode(
        outputs,
        skip_special_tokens=False
    )
    
    return decoded_outputs[0].strip()


# Define Gradio interface
with gr.Blocks(title="Voxtral Demo") as demo:
    gr.Markdown("# JASR v1.1 🎙️ Speech Recognition for Dialectal Arabic ☕")
    #gr.Markdown("Developed with ❤ by [Badr al-Absi](https://badrex.github.io/)")
    gr.Markdown(    
        'Developed with <span style="color:red;">❤</span> by <a href="https://badrex.github.io/">Badr al-Absi</a>'
    )
    gr.Markdown(
        """### Ya Hala 👋🏼

This is a demo for **JASR**, pronounced *Jāsir* (جاسِر) — a Transformer-based automatic speech recognition (ASR) system for dialectal Arabic.

The current running instance is optimized for the regional dialects of *Jazirat al-Arab* (the Arabian Peninsula).  
JASR is still under active development. """
    )

    gr.Markdown("Simply **upload an audio file** 📤 or **record yourself speaking** 🎙️⏺️ to try out the model!")
    
    with gr.Row():
        with gr.Column():
            audio_input = gr.Audio(type="filepath", label="Upload Audio")
            submit_btn = gr.Button("Transcribe Audio", variant="primary")
        
        with gr.Column():
            output_text = gr.Textbox(label="Text Transcription", lines=10, text_align='right', show_copy_button=True)
    
    submit_btn.click(
        fn=process_audio,
        inputs=[audio_input],
        outputs=output_text
    )

    gr.Examples(
        examples=examples if examples else None,
        inputs=[audio_input],
        example_labels=[
            "Kuwait Theatre",
            "Saudi Radio Poetry", 
            "News Report (MSA)", 
            "San3ani Arabic male", 
            "San3ani Arabic female", 
            "Khaleeji Theatre",
            "TEDx KSA",
            "Yousif Saif Football Commentary", 
            "Khaleeji Theatre 2",
            "TV Drama", 
            "KSA Theatre", 
            "TV Drama 2",
            "Radio Jeddah (KSA)", 
            "Omani Theatre", 
            "Khaleeji Drama", 
            "Radio News", 
            "TEDx KSA 2",
            "Radio Jeddah (KSA) 2",
        ],
        examples_per_page=18,

    )

# Launch the app
if __name__ == "__main__":
    demo.queue().launch() #share=False, ssr_mode=False, mcp_server=True
    
# import gradio as gr
# from transformers import pipeline
# import numpy as np
# import os
# from huggingface_hub import login
# import spaces

# HF_TOKEN = os.environ.get("HF_TOKEN")
# if HF_TOKEN:
#     login(token=HF_TOKEN)

# MODEL_ID = "badrex/JASRv1.1"
# transcriber = pipeline("automatic-speech-recognition", model=MODEL_ID)

# # @spaces.GPU
# # def transcribe(audio):
# #     sr, y = audio
# #     # convert to mono if stereo
# #     #if y.ndim > 1:
# #     #    y = y.mean(axis=1)
# #     #y = y.astype(np.float32)
# #     #y /= np.max(np.abs(y))
# #     return transcriber({"sampling_rate": sr, "raw": y})["text"]

# # @spaces.GPU
# # def transcribe(audio):
# #     sr, y = audio

# #     # Convert stereo → mono
# #     if y.ndim > 1:
# #         y = np.mean(y, axis=1)

# #     # Ensure float32
# #     y = y.astype(np.float32)

# #     # Normalize to [-1, 1] if it's not already
# #     if np.max(np.abs(y)) > 1.0:
# #         y /= np.max(np.abs(y))

# @spaces.GPU
# def transcribe(audio):
#     sr, y = audio
    
#     # convert to mono if stereo
#     if y.ndim > 1:
#         y = y.mean(axis=1)
    
#     # resample to 16kHz if needed
#     if sr != 16000:
#         y = librosa.resample(y, orig_sr=sr, target_sr=16000)
    
#     y = y.astype(np.float32)
#     y /= np.max(np.abs(y))
    
#     return transcriber({"sampling_rate": sr, "raw": y})["text"]

# examples = []
# examples_dir = "examples"
# if os.path.exists(examples_dir):
#     for filename in os.listdir(examples_dir):
#         if filename.endswith((".wav", ".mp3", ".ogg")):
#             examples.append([os.path.join(examples_dir, filename)])
    
#     print(f"Found {len(examples)} example files")
# else:
#     print("Examples directory not found")

# # @spaces.GPU
# # def transcribe(audio):
# #     sr, y = audio

# #     if y.ndim > 1:
# #         y = np.mean(y, axis=1)

# #     y = y.astype(np.float32)

# #     # normalize to [-1, 1]
# #     max_val = np.max(np.abs(y))
# #     if max_val > 0:
# #         y /= max_val

# #     target_sr = transcriber.model.config.sampling_rate if hasattr(transcriber.model, "config") else 16000
# #     if sr != target_sr:
# #         import librosa
# #         y = librosa.resample(y, orig_sr=sr, target_sr=target_sr)
# #         sr = target_sr

# #     return transcriber({"sampling_rate": sr, "raw": y})["text"]
    
# demo = gr.Interface(
#     fn=transcribe,
#     inputs=gr.Audio(),
#     outputs="text",
#     title="<div>JASR v1.1 🎙️ <br>Speech Recognition for Dialectal Arabic</div>",
#     description="""
#         <div class="centered-content">
#             <div>
#                 <p>
#                 Developed with ❤ by <a href="https://badrex.github.io/" style="color: #2563eb;">Badr al-Absi</a>  
#                 </p>
#                 <br>
#                 <p style="font-size: 15px; line-height: 1.8;">
#                 Marhaban 👋🏼
#                 <br>
#                 <br>
#                  This is a demo for JASR, pronounced <i>Jāsir</i> [جاسِر], a Transformer-based automatic speech recognition (ASR) system for dialectal Arabic.
#                  The current running instance is optimized for the regional dialects of <i>Jazirat al-Arab</i>, or the Arabian Peninsula. 
#                  JASR is still under active development.
#                 <br>                   
#                 <p style="font-size: 15px; line-height: 1.8;">
#                 Simply <strong>upload an audio file</strong> 📤 or <strong>record yourself speaking</strong> 🎙️⏺️ to try out the model!
#                 </p>
#             </div>
#         </div>
#         """,
#     examples=examples if examples else None,
#     example_labels=[
#         "Kuwait Theatre",
#         "Saudi Radio Poetry", 
#         "News Report (MSA)", 
#         "San3ani Arabic male", 
#         "San3ani Arabic female", 
#         "Khaleeji Theatre",
#         "TEDx KSA",
#         "Yousif Saif Football Commentary", 
#         "Khaleeji Theatre 2",
#         "TV Drama", 
#         "KSA Theatre", 
#         "TV Drama 2",
#         "Radio Jeddah (KSA)", 
#         "Omani Theatre", 
#         "Khaleeji Drama", 
#         "Radio News", 
#         "TEDx KSA 2",
#         "Radio Jeddah (KSA) 2",
#     ],
#     cache_examples=False,  
#     examples_per_page=18,
#     flagging_mode=None,
# )

# if __name__ == "__main__":
#     demo.launch()