File size: 12,278 Bytes
cf5d8cf 5ea0a9a 72ae5ae cf5d8cf 72ae5ae cf5d8cf 72ae5ae d34c38d f4cbb8a 5ea0a9a 72ae5ae d34c38d 72ae5ae 761812f 72ae5ae cf5d8cf 0bec3bf cf5d8cf 72ae5ae cf5d8cf 72ae5ae cf5d8cf 5ea0a9a 72ae5ae 0bec3bf 72ae5ae cf5d8cf 72ae5ae cf5d8cf 72ae5ae 0bec3bf b8aff8d 72ae5ae cf5d8cf 72ae5ae bbe2eb3 72ae5ae cf5d8cf 5ea0a9a d34c38d 5ea0a9a 72ae5ae 5ea0a9a 0bec3bf 72ae5ae 5ea0a9a 0bec3bf 5ea0a9a 0bec3bf 5ea0a9a 0bec3bf 5ea0a9a 0bec3bf 5ea0a9a 0bec3bf cf5d8cf 64e01cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
import base64
import html
import mimetypes
import os
from pathlib import Path
from typing import Any, Dict, List
import gradio as gr
from openai import OpenAI
DEFAULT_MODEL = os.getenv("DEFAULT_MODEL", "ERNIE-4.5-VL-28B-A3B-Thinking")
BASE_URL = os.getenv("BASE_URL","")
api_key = os.getenv("ERNIE_API_KEY","")
CUSTOM_CSS = """
body {
background: radial-gradient(circle at top, #fdfbff 0%, #e7ecf7 45%, #dfe6f5 100%);
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Arial, sans-serif;
color: #0f172a;
}
.gradio-container {
max-width: 1200px !important;
margin: 0 auto;
}
#ernie-hero {
padding: 12px 0 4px;
}
#ernie-hero h1 {
font-size: 1.85rem;
margin-bottom: 0;
font-weight: 500;
}
#model-link {
margin-top: 6px;
font-size: 0.95rem;
}
#model-link a {
color: #4c1d95;
text-decoration: none;
font-weight: 500;
}
#model-link a:hover {
text-decoration: underline;
}
#examples-panel {
margin-top: 20px;
padding: 18px 22px;
border-radius: 18px;
border: 1px solid rgba(15, 23, 42, 0.12);
background: rgba(255, 255, 255, 0.92);
box-shadow: 0 15px 35px rgba(15, 23, 42, 0.08);
gap: 18px;
}
#examples-panel h4 {
margin: 0 0 8px;
font-size: 1.1rem;
font-weight: 500;
}
#examples-panel p {
margin: 0;
color: rgba(15, 23, 42, 0.7);
font-size: 0.95rem;
}
#examples-grid table {
width: 100%;
}
#examples-grid table tbody {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(220px, 1fr));
gap: 12px;
}
#examples-grid table tr {
display: block;
background: #f7f9ff;
border-radius: 14px;
border: 1px solid rgba(15, 23, 42, 0.08);
padding: 14px;
box-shadow: 0 10px 28px rgba(15, 23, 42, 0.08);
}
#examples-grid table td {
display: block;
padding: 0;
}
#chat-wrapper {
margin-top: 32px;
border-radius: 24px;
padding: 18px;
background: rgba(255, 255, 255, 0.95);
border: 1px solid rgba(15, 23, 42, 0.1);
box-shadow: 0 25px 60px rgba(15, 23, 42, 0.12);
}
.ernie-section {
border-radius: 18px;
margin-bottom: 14px;
padding: 16px 18px;
border: 1px solid rgba(15, 23, 42, 0.1);
background: rgba(255, 255, 255, 0.95);
box-shadow: 0 10px 24px rgba(15, 23, 42, 0.08);
}
.ernie-section-header {
font-size: 0.85rem;
text-transform: uppercase;
letter-spacing: 0.08em;
font-weight: 600;
color: rgba(15, 23, 42, 0.65);
display: flex;
align-items: center;
gap: 6px;
}
.ernie-section-body {
margin-top: 10px;
font-size: 1rem;
color: rgba(15, 23, 42, 0.92);
white-space: pre-wrap;
line-height: 1.55;
}
.ernie-thinking {
border-color: rgba(79, 70, 229, 0.35);
background: rgba(129, 140, 248, 0.08);
}
.ernie-answer {
border-color: rgba(16, 185, 129, 0.35);
background: rgba(110, 231, 183, 0.08);
}
@media (prefers-color-scheme: dark) {
body {
background: radial-gradient(circle at top, #1f264b 0%, #0f172a 45%, #040713 100%);
color: #ecf2ff;
}
#model-link a {
color: #a5b4fc;
}
#examples-panel {
border: 1px solid rgba(255, 255, 255, 0.05);
background: rgba(8, 13, 30, 0.85);
box-shadow: 0 15px 45px rgba(3, 7, 18, 0.55);
}
#examples-panel p {
color: rgba(236, 242, 255, 0.75);
}
#examples-grid table tr {
background: rgba(15, 23, 42, 0.7);
border: 1px solid rgba(255, 255, 255, 0.04);
box-shadow: 0 10px 30px rgba(4, 6, 15, 0.45);
}
#chat-wrapper {
background: rgba(2, 6, 23, 0.78);
border: 1px solid rgba(99, 102, 241, 0.25);
box-shadow: 0 25px 70px rgba(2, 6, 23, 0.7);
}
.ernie-section {
border: 1px solid rgba(255, 255, 255, 0.08);
background: rgba(15, 23, 42, 0.85);
box-shadow: 0 10px 30px rgba(2, 6, 23, 0.55);
}
.ernie-section-header {
color: rgba(236, 242, 255, 0.75);
}
.ernie-section-body {
color: rgba(248, 250, 255, 0.95);
}
.ernie-answer {
border-color: rgba(45, 212, 191, 0.45);
background: rgba(8, 47, 56, 0.65);
}
.ernie-thinking {
border-color: rgba(165, 180, 252, 0.4);
background: rgba(30, 27, 75, 0.65);
}
}
"""
_client = OpenAI(
base_url=BASE_URL,
api_key=api_key,
)
def _data_url(path: str) -> str:
mime, _ = mimetypes.guess_type(path)
mime = mime or "application/octet-stream"
data = base64.b64encode(Path(path).read_bytes()).decode("utf-8")
return f"data:{mime};base64,{data}"
def _media_content(path: str) -> Dict[str, Any]:
"""支持图片和视频"""
mime, _ = mimetypes.guess_type(path)
if mime and mime.startswith("video"):
# 视频格式
return {"type": "video_url", "video_url": {"url": _data_url(path)}}
else:
# 图片格式(默认)
return {"type": "image_url", "image_url": {"url": _data_url(path)}}
def _text_content(text: str) -> Dict[str, Any]:
return {"type": "text", "text": text}
def _message(role: str, content: Any) -> Dict[str, Any]:
return {"role": role, "content": content}
def _format_sections(thinking: str, answer: str | None = None) -> str:
"""Render Thinking/Answer blocks with HTML so the chatbot can style them."""
def _build_block(kind: str, label: str, text: str, icon: str) -> str:
text = (text or "").strip()
if not text:
return ""
escaped = html.escape(text)
return (
f'<div class="ernie-section ernie-{kind}">'
f'<div class="ernie-section-header">{icon} {label}</div>'
f'<div class="ernie-section-body">{escaped}</div>'
"</div>"
)
sections = [
_build_block("thinking", "Thinking", thinking, "🧠"),
_build_block("answer", "Answer", answer, "✨") if answer is not None else "",
]
rendered = "".join(section for section in sections if section)
return rendered
def _build_user_message(message: Dict[str, Any]) -> Dict[str, Any]:
files = message.get("files") or []
text = (message.get("text") or "").strip()
content: List[Dict[str, Any]] = [_media_content(p) for p in files]
if text:
content.append(_text_content(text))
return _message("user", content)
def _convert_history(history: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
msgs: List[Dict[str, Any]] = []
user_content: List[Dict[str, Any]] = []
for turn in history or []:
role, content = turn.get("role"), turn.get("content")
if role == "user":
if isinstance(content, str):
user_content.append(_text_content(content))
elif isinstance(content, tuple):
user_content.extend(_media_content(path) for path in content if path)
elif role == "assistant":
if "Answer:\n" in content:
# 分割并仅保留Answer部分
answer_only = content.split("Answer:\n", 1)[1].strip()
else:
# 兼容没有Thinking的情况
answer_only = content.strip()
if user_content:
msgs.append(_message("user", user_content.copy()))
user_content.clear()
msgs.append(_message("assistant", [{"type": "text", "text": answer_only}]))
return msgs
def stream_response(message: Dict[str, Any], history: List[Dict[str, Any]], model_name: str = DEFAULT_MODEL):
messages = _convert_history(history)
messages.append(_build_user_message(message))
try:
stream = _client.chat.completions.create(
model="default",
messages=messages,
stream=True
)
thinking_parts: List[str] = []
answer_parts: List[str] = []
answer_started = False
for chunk in stream:
delta = chunk.choices[0].delta
if getattr(delta, "reasoning_content", None):
thinking_parts.append(delta.reasoning_content)
if getattr(delta, "content", None):
answer_started = True
answer_parts.append(delta.content)
thinking_text = "".join(thinking_parts)
answer_text = "".join(answer_parts) if answer_parts else None
if answer_started:
rendered = _format_sections(thinking_text, answer_text)
else:
rendered = _format_sections(thinking_text)
if rendered:
yield rendered
if not answer_started and thinking_parts:
# 流结束但模型未返回Answer时,至少保证Thinking被展示完全
rendered = _format_sections("".join(thinking_parts))
if rendered:
yield rendered
except Exception as e:
yield f"Failed to get response: {e}"
def run_example(message: Dict[str, Any], history: List[Dict[str, Any]] | None = None):
"""
用于 Examples 点击时直接走大模型。
- 输入还是 ChatInterface 那种 message dict:{"text": ..., "files": [...]}
- history 是 Chatbot 当前的消息列表(type="messages")
- 输出改成 Chatbot 需要的消息列表:[{role, content}, ...]
"""
history = history or []
# 直接复用你现有的流式函数,只是把它返回的 HTML 包一层 messages
for rendered in stream_response(message, history):
# 这里只简单把 user 文本展示出来;图片就当“上下文里有了”,不专门渲染
user_text = (message.get("text") or "").strip() or "[Example]"
display_history = history + [
{"role": "user", "content": user_text},
{"role": "assistant", "content": rendered},
]
# 关键:对 Chatbot 来说,返回值要是「完整的消息列表」
yield display_history
def build_demo() -> gr.Blocks:
theme = gr.themes.Soft(primary_hue="violet", secondary_hue="cyan", neutral_hue="slate")
with gr.Blocks(
title="ERNIE-4.5-VL-28B-A3B-Thinking",
theme=theme,
css=CUSTOM_CSS,
) as demo:
with gr.Column(elem_id="ernie-hero"):
gr.Markdown(
"""
<h1>Chat with ERNIE-4.5-VL-28B-A3B-Thinking</h1>
""",
elem_id="hero-text",
)
gr.Markdown(
"""
<p id="model-link">
Model Repository:
<a href="https://huggingface.co/baidu/ERNIE-4.5-VL-28B-A3B-Thinking" target="_blank" rel="noopener">
ERNIE-4.5-VL-28B-A3B-Thinking
</a>
</p>
"""
)
textbox = gr.MultimodalTextbox(
show_label=False,
placeholder="Enter text, or upload one or more images...",
file_types=["image","video"],
file_count="multiple"
)
chatbot = gr.Chatbot(
type="messages",
allow_tags=["think"],
height=560,
render_markdown=True,
show_copy_button=True,
)
examples = [
{
"text": "这道题怎么解",
"files": ["examples/case1.png"]
},
{
"text": "How many real people are actually in the picture?",
"files": ["examples/case2.png"]
},
]
with gr.Column(elem_id="examples-panel"):
gr.Examples(
examples=examples,
inputs=textbox,
label=None,
examples_per_page=4,
elem_id="examples-grid",
fn=run_example, # 点击示例时,直接走大模型
outputs=chatbot,
run_on_click=True,
)
with gr.Column(elem_id="chat-wrapper"):
chat_interface = gr.ChatInterface(
fn=stream_response,
type="messages",
multimodal=True,
chatbot=chatbot,
textbox=textbox,
)
return demo.queue(default_concurrency_limit=8)
if __name__ == "__main__":
build_demo().launch()
|