Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,7 +9,6 @@ from vectorstore import get_chroma_vectorstore
|
|
| 9 |
from embeddings import get_SFR_Code_embedding_model
|
| 10 |
from kadiApy_ragchain import KadiApyRagchain
|
| 11 |
|
| 12 |
-
# Load environment variables from .env file
|
| 13 |
load_dotenv()
|
| 14 |
|
| 15 |
vectorstore_path = "data/vectorstore"
|
|
@@ -23,26 +22,29 @@ with open("config.json", "r") as file:
|
|
| 23 |
login(HF_TOKEN)
|
| 24 |
hf_api = HfApi()
|
| 25 |
|
| 26 |
-
# Access the values
|
| 27 |
LLM_MODEL_NAME = config["llm_model_name"]
|
| 28 |
LLM_MODEL_TEMPERATURE = float(config["llm_model_temperature"])
|
| 29 |
|
| 30 |
|
| 31 |
class KadiBot:
|
| 32 |
def __init__(self):
|
| 33 |
-
# Initialize vector store and language model
|
| 34 |
vectorstore = get_chroma_vectorstore(get_SFR_Code_embedding_model(), vectorstore_path)
|
| 35 |
llm = get_groq_llm(LLM_MODEL_NAME, LLM_MODEL_TEMPERATURE, GROQ_API_KEY)
|
| 36 |
|
| 37 |
-
# Initialize RAG chain
|
| 38 |
self.kadiAPY_ragchain = KadiApyRagchain(llm, vectorstore)
|
| 39 |
|
| 40 |
-
def
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
response = self.kadiAPY_ragchain.process_query(user_query, chat_history)
|
| 43 |
chat_history[-1] = (user_query, response)
|
| 44 |
|
| 45 |
-
return chat_history
|
|
|
|
| 46 |
|
| 47 |
|
| 48 |
def add_text_to_chat_history(chat_history, user_input):
|
|
|
|
| 9 |
from embeddings import get_SFR_Code_embedding_model
|
| 10 |
from kadiApy_ragchain import KadiApyRagchain
|
| 11 |
|
|
|
|
| 12 |
load_dotenv()
|
| 13 |
|
| 14 |
vectorstore_path = "data/vectorstore"
|
|
|
|
| 22 |
login(HF_TOKEN)
|
| 23 |
hf_api = HfApi()
|
| 24 |
|
|
|
|
| 25 |
LLM_MODEL_NAME = config["llm_model_name"]
|
| 26 |
LLM_MODEL_TEMPERATURE = float(config["llm_model_temperature"])
|
| 27 |
|
| 28 |
|
| 29 |
class KadiBot:
|
| 30 |
def __init__(self):
|
|
|
|
| 31 |
vectorstore = get_chroma_vectorstore(get_SFR_Code_embedding_model(), vectorstore_path)
|
| 32 |
llm = get_groq_llm(LLM_MODEL_NAME, LLM_MODEL_TEMPERATURE, GROQ_API_KEY)
|
| 33 |
|
|
|
|
| 34 |
self.kadiAPY_ragchain = KadiApyRagchain(llm, vectorstore)
|
| 35 |
|
| 36 |
+
def handle_chat(self, chat_history):
|
| 37 |
+
if not chat_history:
|
| 38 |
+
return chat_history
|
| 39 |
+
|
| 40 |
+
# Get the last user query from the chat history
|
| 41 |
+
user_query = chat_history[-1][0]
|
| 42 |
+
|
| 43 |
response = self.kadiAPY_ragchain.process_query(user_query, chat_history)
|
| 44 |
chat_history[-1] = (user_query, response)
|
| 45 |
|
| 46 |
+
return chat_history
|
| 47 |
+
|
| 48 |
|
| 49 |
|
| 50 |
def add_text_to_chat_history(chat_history, user_input):
|