logs
Browse files- app.py +5 -4
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -6,8 +6,10 @@ import gradio as gr
|
|
| 6 |
import numpy as np
|
| 7 |
import requests
|
| 8 |
from dotenv import load_dotenv
|
|
|
|
| 9 |
from huggingface_hub import InferenceClient
|
| 10 |
|
|
|
|
| 11 |
load_dotenv()
|
| 12 |
|
| 13 |
MAX_SEED = np.iinfo(np.int32).max
|
|
@@ -15,13 +17,12 @@ MAX_IMAGE_SIZE = 2048
|
|
| 15 |
TOKEN = None
|
| 16 |
FAL_KEY = None
|
| 17 |
|
|
|
|
| 18 |
def download_locally(url: str, local_path: str = "downloaded_file.png") -> str:
|
| 19 |
"""Download an image or a video from a URL to a local path.
|
| 20 |
-
|
| 21 |
Args:
|
| 22 |
url (str): The URL of the image to download. Must be an http(s) URL.
|
| 23 |
local_path (str, optional): The path (including filename) where the file should be saved. Defaults to "downloaded_file.png".
|
| 24 |
-
|
| 25 |
Returns:
|
| 26 |
str: The filesystem path of the saved file – suitable for returning to a **gr.File** output, or as an MCP tool response.
|
| 27 |
"""
|
|
@@ -41,7 +42,6 @@ def download_locally(url: str, local_path: str = "downloaded_file.png") -> str:
|
|
| 41 |
def login_hf(oauth_token: gr.OAuthToken | None):
|
| 42 |
"""
|
| 43 |
Login to Hugging Face and check initial key statuses.
|
| 44 |
-
|
| 45 |
Args:
|
| 46 |
oauth_token (gr.OAuthToken | None): The OAuth token from Hugging Face.
|
| 47 |
"""
|
|
@@ -52,6 +52,7 @@ def login_hf(oauth_token: gr.OAuthToken | None):
|
|
| 52 |
else:
|
| 53 |
print("No OAuth token provided, using environment variable HF_TOKEN.")
|
| 54 |
TOKEN = os.environ.get("HF_TOKEN")
|
|
|
|
| 55 |
|
| 56 |
|
| 57 |
def login_fal(fal_key_from_ui: str | None):
|
|
@@ -68,6 +69,7 @@ def login_fal(fal_key_from_ui: str | None):
|
|
| 68 |
else:
|
| 69 |
FAL_KEY = os.environ.get("FAL_KEY")
|
| 70 |
print("FAL_KEY is configured from environment variable.")
|
|
|
|
| 71 |
|
| 72 |
|
| 73 |
def generate_image(prompt: str, seed: int = 42, width: int = 1024, height: int = 1024, num_inference_steps: int = 25):
|
|
@@ -85,7 +87,6 @@ def generate_image(prompt: str, seed: int = 42, width: int = 1024, height: int =
|
|
| 85 |
num_inference_steps (int, default=25):
|
| 86 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 87 |
expense of slower inference.
|
| 88 |
-
|
| 89 |
"""
|
| 90 |
client = InferenceClient(provider="fal-ai", token=TOKEN)
|
| 91 |
image = client.text_to_image(
|
|
|
|
| 6 |
import numpy as np
|
| 7 |
import requests
|
| 8 |
from dotenv import load_dotenv
|
| 9 |
+
|
| 10 |
from huggingface_hub import InferenceClient
|
| 11 |
|
| 12 |
+
|
| 13 |
load_dotenv()
|
| 14 |
|
| 15 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
| 17 |
TOKEN = None
|
| 18 |
FAL_KEY = None
|
| 19 |
|
| 20 |
+
|
| 21 |
def download_locally(url: str, local_path: str = "downloaded_file.png") -> str:
|
| 22 |
"""Download an image or a video from a URL to a local path.
|
|
|
|
| 23 |
Args:
|
| 24 |
url (str): The URL of the image to download. Must be an http(s) URL.
|
| 25 |
local_path (str, optional): The path (including filename) where the file should be saved. Defaults to "downloaded_file.png".
|
|
|
|
| 26 |
Returns:
|
| 27 |
str: The filesystem path of the saved file – suitable for returning to a **gr.File** output, or as an MCP tool response.
|
| 28 |
"""
|
|
|
|
| 42 |
def login_hf(oauth_token: gr.OAuthToken | None):
|
| 43 |
"""
|
| 44 |
Login to Hugging Face and check initial key statuses.
|
|
|
|
| 45 |
Args:
|
| 46 |
oauth_token (gr.OAuthToken | None): The OAuth token from Hugging Face.
|
| 47 |
"""
|
|
|
|
| 52 |
else:
|
| 53 |
print("No OAuth token provided, using environment variable HF_TOKEN.")
|
| 54 |
TOKEN = os.environ.get("HF_TOKEN")
|
| 55 |
+
print("TOKEN: ", TOKEN)
|
| 56 |
|
| 57 |
|
| 58 |
def login_fal(fal_key_from_ui: str | None):
|
|
|
|
| 69 |
else:
|
| 70 |
FAL_KEY = os.environ.get("FAL_KEY")
|
| 71 |
print("FAL_KEY is configured from environment variable.")
|
| 72 |
+
print("FAL_KEY: ", FAL_KEY)
|
| 73 |
|
| 74 |
|
| 75 |
def generate_image(prompt: str, seed: int = 42, width: int = 1024, height: int = 1024, num_inference_steps: int = 25):
|
|
|
|
| 87 |
num_inference_steps (int, default=25):
|
| 88 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 89 |
expense of slower inference.
|
|
|
|
| 90 |
"""
|
| 91 |
client = InferenceClient(provider="fal-ai", token=TOKEN)
|
| 92 |
image = client.text_to_image(
|
requirements.txt
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
huggingface-hub
|
| 2 |
numpy
|
| 3 |
python-dotenv
|
| 4 |
-
fal-client
|
|
|
|
|
|
| 1 |
huggingface-hub
|
| 2 |
numpy
|
| 3 |
python-dotenv
|
| 4 |
+
fal-client
|
| 5 |
+
gradio
|