Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from transformers import BartForConditionalGeneration, BartTokenizer | |
| from youtube_transcript_api import YouTubeTranscriptApi | |
| # Load BART model and tokenizer | |
| model_name = 'facebook/bart-large-cnn' | |
| tokenizer = BartTokenizer.from_pretrained(model_name) | |
| model = BartForConditionalGeneration.from_pretrained(model_name) | |
| def get_transcript(url): | |
| try: | |
| video_id = url.split('=')[1] | |
| transcript_list = YouTubeTranscriptApi.get_transcript(video_id) | |
| transcript_text = "" | |
| for item in transcript_list: | |
| transcript_text += item['text'] + "\n" | |
| return transcript_text | |
| except Exception as e: | |
| return "Error fetching transcript: " + str(e) | |
| def summarize_transcript(transcript): | |
| input_ids = tokenizer.encode("summarize: " + transcript, return_tensors="pt", max_length=1024, truncation=True) | |
| summary_ids = model.generate(input_ids, num_beams=4, min_length=30, max_length=200, early_stopping=True) | |
| summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
| return summary | |
| def main(): | |
| st.title("YouTube Video Transcription Summarizer") | |
| video_url = st.text_input("Enter YouTube Video URL:") | |
| if st.button("Summarize Transcript"): | |
| transcript = get_transcript(video_url) | |
| if not transcript: | |
| st.error("Error fetching transcript.") | |
| else: | |
| summary = summarize_transcript(transcript) | |
| st.subheader("Summary:") | |
| st.write(summary) | |
| if __name__ == "__main__": | |
| main() | |