Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,66 +7,8 @@ from evodiff.generate import generate_oaardm, generate_d3pm
|
|
| 7 |
from evodiff.generate_msa import generate_query_oadm_msa_simple
|
| 8 |
from evodiff.conditional_generation import inpaint_simple, generate_scaffold
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
from colabfold.batch import run
|
| 13 |
-
|
| 14 |
-
def a3m_file(file):
|
| 15 |
-
return "tmp.a3m"
|
| 16 |
-
|
| 17 |
-
def predict_protein(sequence):
|
| 18 |
-
download_alphafold_params("alphafold2_ptm", Path("."))
|
| 19 |
-
results = run(
|
| 20 |
-
queries=[('evodiff_protein', sequence, None)],
|
| 21 |
-
result_dir='evodiff_protein',
|
| 22 |
-
use_templates=False,
|
| 23 |
-
num_relax=0,
|
| 24 |
-
msa_mode="mmseqs2_uniref_env",
|
| 25 |
-
model_type="alphafold2_ptm",
|
| 26 |
-
num_models=1,
|
| 27 |
-
num_recycles=1,
|
| 28 |
-
model_order=[1],
|
| 29 |
-
is_complex=False,
|
| 30 |
-
data_dir=Path("."),
|
| 31 |
-
keep_existing_results=False,
|
| 32 |
-
rank_by="auto",
|
| 33 |
-
stop_at_score=float(100),
|
| 34 |
-
zip_results=False,
|
| 35 |
-
user_agent="colabfold/google-colab-main"
|
| 36 |
-
)
|
| 37 |
-
|
| 38 |
-
return f"evodiff_protein/evodiff_protein_unrelaxed_rank_001_alphafold2_ptm_model_1_seed_000.pdb"
|
| 39 |
-
|
| 40 |
-
def display_pdb(path_to_pdb):
|
| 41 |
-
'''
|
| 42 |
-
#function to display pdb in py3dmol
|
| 43 |
-
SOURCE: https://huggingface.co/spaces/merle/PROTEIN_GENERATOR/blob/main/app.py
|
| 44 |
-
'''
|
| 45 |
-
pdb = open(path_to_pdb, "r").read()
|
| 46 |
-
|
| 47 |
-
view = py3Dmol.view(width=500, height=500)
|
| 48 |
-
view.addModel(pdb, "pdb")
|
| 49 |
-
view.setStyle({'model': -1}, {"cartoon": {'colorscheme':{'prop':'b','gradient':'roygb','min':0,'max':1}}})#'linear', 'min': 0, 'max': 1, 'colors': ["#ff9ef0","#a903fc",]}}})
|
| 50 |
-
view.zoomTo()
|
| 51 |
-
output = view._make_html().replace("'", '"')
|
| 52 |
-
print(view._make_html())
|
| 53 |
-
x = f"""<!DOCTYPE html><html></center> {output} </center></html>""" # do not use ' in this input
|
| 54 |
-
|
| 55 |
-
return f"""<iframe height="500px" width="100%" name="result" allow="midi; geolocation; microphone; camera;
|
| 56 |
-
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
|
| 57 |
-
allow-scripts allow-same-origin allow-popups
|
| 58 |
-
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
|
| 59 |
-
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""
|
| 60 |
-
|
| 61 |
-
'''
|
| 62 |
-
return f"""<iframe style="width: 100%; height:700px" name="result" allow="midi; geolocation; microphone; camera;
|
| 63 |
-
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
|
| 64 |
-
allow-scripts allow-same-origin allow-popups
|
| 65 |
-
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
|
| 66 |
-
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""
|
| 67 |
-
'''
|
| 68 |
-
|
| 69 |
-
def make_uncond_seq(seq_len, model_type, pred_structure):
|
| 70 |
if model_type == "EvoDiff-Seq-OADM 38M":
|
| 71 |
checkpoint = OA_DM_38M()
|
| 72 |
model, collater, tokenizer, scheme = checkpoint
|
|
@@ -77,29 +19,17 @@ def make_uncond_seq(seq_len, model_type, pred_structure):
|
|
| 77 |
model, collater, tokenizer, scheme, timestep, Q_bar, Q = checkpoint
|
| 78 |
tokeinzed_sample, generated_sequence = generate_d3pm(model, tokenizer, Q, Q_bar, timestep, int(seq_len), batch_size=1, device='cpu')
|
| 79 |
|
| 80 |
-
|
| 81 |
-
path_to_pdb = predict_protein(generated_sequence)
|
| 82 |
-
molhtml = display_pdb(path_to_pdb)
|
| 83 |
-
|
| 84 |
-
return generated_sequence, molhtml
|
| 85 |
-
else:
|
| 86 |
-
return generated_sequence, None
|
| 87 |
|
| 88 |
-
def make_cond_seq(seq_len, msa_file, n_sequences, model_type
|
| 89 |
if model_type == "EvoDiff-MSA":
|
| 90 |
checkpoint = MSA_OA_DM_MAXSUB()
|
| 91 |
model, collater, tokenizer, scheme = checkpoint
|
| 92 |
tokeinzed_sample, generated_sequence = generate_query_oadm_msa_simple(msa_file.name, model, tokenizer, int(n_sequences), seq_length=int(seq_len), device='cpu', selection_type='random')
|
| 93 |
|
| 94 |
-
|
| 95 |
-
path_to_pdb = predict_protein(generated_sequence)
|
| 96 |
-
molhtml = display_pdb(path_to_pdb)
|
| 97 |
-
|
| 98 |
-
return generated_sequence, molhtml
|
| 99 |
-
else:
|
| 100 |
-
return generated_sequence, None
|
| 101 |
|
| 102 |
-
def make_inpainted_idrs(sequence, start_idx, end_idx, model_type
|
| 103 |
if model_type == "EvoDiff-Seq":
|
| 104 |
checkpoint = OA_DM_38M()
|
| 105 |
model, collater, tokenizer, scheme = checkpoint
|
|
@@ -112,15 +42,9 @@ def make_inpainted_idrs(sequence, start_idx, end_idx, model_type, pred_structure
|
|
| 112 |
"generated_region": generated_idr
|
| 113 |
}
|
| 114 |
|
| 115 |
-
|
| 116 |
-
path_to_pdb = predict_protein(entire_sequence)
|
| 117 |
-
molhtml = display_pdb(path_to_pdb)
|
| 118 |
-
|
| 119 |
-
return generated_idr_output, molhtml
|
| 120 |
-
else:
|
| 121 |
-
return generated_idr_output, None
|
| 122 |
|
| 123 |
-
def make_scaffold_motifs(pdb_code, start_idx, end_idx, scaffold_length, model_type
|
| 124 |
if model_type == "EvoDiff-Seq":
|
| 125 |
checkpoint = OA_DM_38M()
|
| 126 |
model, collater, tokenizer, scheme = checkpoint
|
|
@@ -135,26 +59,16 @@ def make_scaffold_motifs(pdb_code, start_idx, end_idx, scaffold_length, model_ty
|
|
| 135 |
"new_end_index": new_end_idx
|
| 136 |
}
|
| 137 |
|
| 138 |
-
return generated_scaffold_output
|
| 139 |
-
# if pred_structure:
|
| 140 |
-
# # path_to_pdb = predict_protein(generated_sequence)
|
| 141 |
-
# path_to_pdb = f"scaffolding-pdbs/{pdb_code}.pdb"
|
| 142 |
-
# molhtml = display_pdb(path_to_pdb)
|
| 143 |
-
|
| 144 |
-
# return generated_scaffold_output, molhtml
|
| 145 |
-
# else:
|
| 146 |
-
# return generated_scaffold_output, None
|
| 147 |
|
| 148 |
usg_app = gr.Interface(
|
| 149 |
fn=make_uncond_seq,
|
| 150 |
inputs=[
|
| 151 |
-
gr.Slider(10,
|
| 152 |
-
gr.Dropdown(["EvoDiff-Seq-OADM 38M", "EvoDiff-D3PM-Uniform 38M"], value="EvoDiff-Seq-OADM 38M", type="value", label = "Model")
|
| 153 |
-
gr.Checkbox(value=False, label = "Predict Structure?", visible=False)
|
| 154 |
],
|
| 155 |
outputs=[
|
| 156 |
-
"text"
|
| 157 |
-
gr.HTML()
|
| 158 |
],
|
| 159 |
title = "Unconditional sequence generation",
|
| 160 |
description="Generate a sequence with `EvoDiff-Seq-OADM 38M` (smaller/faster) or `EvoDiff-D3PM-Uniform 38M` (larger/slower) models."
|
|
@@ -163,15 +77,13 @@ usg_app = gr.Interface(
|
|
| 163 |
csg_app = gr.Interface(
|
| 164 |
fn=make_cond_seq,
|
| 165 |
inputs=[
|
| 166 |
-
gr.Slider(10,
|
| 167 |
gr.File(file_types=["a3m"], label = "MSA File"),
|
| 168 |
-
gr.Number(value=
|
| 169 |
-
gr.Dropdown(["EvoDiff-MSA"], value="EvoDiff-MSA", type="value", label = "Model")
|
| 170 |
-
gr.Checkbox(value=False, label = "Predict Structure?", visible=False)
|
| 171 |
],
|
| 172 |
outputs=[
|
| 173 |
-
"text"
|
| 174 |
-
gr.HTML()
|
| 175 |
],
|
| 176 |
# examples=[["https://github.com/microsoft/evodiff/raw/main/examples/example_files/bfd_uniclust_hits.a3m"]],
|
| 177 |
title = "Conditional sequence generation",
|
|
@@ -184,12 +96,10 @@ idr_app = gr.Interface(
|
|
| 184 |
gr.Textbox(placeholder="DQTERTVRSFEGRRTAPYLDSRNVLTIGYGHLLNRPGANKSWEGRLTSALPREFKQRLTELAASQLHETDVRLATARAQALYGSGAYFESVPVSLNDLWFDSVFNLGERKLLNWSGLRTKLESRDWGAAAKDLGRHTFGREPVSRRMAESMRMRRGIDLNHYNI", label = "Sequence"),
|
| 185 |
gr.Number(value=20, placeholder=20, precision=0, label = "Start Index"),
|
| 186 |
gr.Number(value=50, placeholder=50, precision=0, label = "End Index"),
|
| 187 |
-
gr.Dropdown(["EvoDiff-Seq"], value="EvoDiff-Seq", type="value", label = "Model")
|
| 188 |
-
gr.Checkbox(value=False, label = "Predict Structure?", visible=False)
|
| 189 |
],
|
| 190 |
outputs=[
|
| 191 |
-
"text"
|
| 192 |
-
gr.HTML()
|
| 193 |
],
|
| 194 |
title = "Inpainting IDRs",
|
| 195 |
description="Inpaining a new region inside a given sequence using the `EvoDiff-Seq` model."
|
|
@@ -202,12 +112,10 @@ scaffold_app = gr.Interface(
|
|
| 202 |
gr.Textbox(value="[15, 51]", placeholder="[15, 51]", label = "Start Index (as list)"),
|
| 203 |
gr.Textbox(value="[34, 70]", placeholder="[34, 70]", label = "End Index (as list)"),
|
| 204 |
gr.Number(value=75, placeholder=75, precision=0, label = "Scaffold Length"),
|
| 205 |
-
gr.Dropdown(["EvoDiff-Seq", "EvoDiff-MSA"], value="EvoDiff-Seq", type="value", label = "Model")
|
| 206 |
-
gr.Checkbox(value=False, label = "Predict Structure?", visible=False)
|
| 207 |
],
|
| 208 |
outputs=[
|
| 209 |
-
"text"
|
| 210 |
-
gr.HTML()
|
| 211 |
],
|
| 212 |
title = "Scaffolding functional motifs",
|
| 213 |
description="Scaffolding a new functional motif inside a given PDB structure using the `EvoDiff-Seq` model."
|
|
|
|
| 7 |
from evodiff.generate_msa import generate_query_oadm_msa_simple
|
| 8 |
from evodiff.conditional_generation import inpaint_simple, generate_scaffold
|
| 9 |
|
| 10 |
+
|
| 11 |
+
def make_uncond_seq(seq_len, model_type):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
if model_type == "EvoDiff-Seq-OADM 38M":
|
| 13 |
checkpoint = OA_DM_38M()
|
| 14 |
model, collater, tokenizer, scheme = checkpoint
|
|
|
|
| 19 |
model, collater, tokenizer, scheme, timestep, Q_bar, Q = checkpoint
|
| 20 |
tokeinzed_sample, generated_sequence = generate_d3pm(model, tokenizer, Q, Q_bar, timestep, int(seq_len), batch_size=1, device='cpu')
|
| 21 |
|
| 22 |
+
return generated_sequence
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
def make_cond_seq(seq_len, msa_file, n_sequences, model_type):
|
| 25 |
if model_type == "EvoDiff-MSA":
|
| 26 |
checkpoint = MSA_OA_DM_MAXSUB()
|
| 27 |
model, collater, tokenizer, scheme = checkpoint
|
| 28 |
tokeinzed_sample, generated_sequence = generate_query_oadm_msa_simple(msa_file.name, model, tokenizer, int(n_sequences), seq_length=int(seq_len), device='cpu', selection_type='random')
|
| 29 |
|
| 30 |
+
return generated_sequence
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
+
def make_inpainted_idrs(sequence, start_idx, end_idx, model_type):
|
| 33 |
if model_type == "EvoDiff-Seq":
|
| 34 |
checkpoint = OA_DM_38M()
|
| 35 |
model, collater, tokenizer, scheme = checkpoint
|
|
|
|
| 42 |
"generated_region": generated_idr
|
| 43 |
}
|
| 44 |
|
| 45 |
+
return generated_idr_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
+
def make_scaffold_motifs(pdb_code, start_idx, end_idx, scaffold_length, model_type):
|
| 48 |
if model_type == "EvoDiff-Seq":
|
| 49 |
checkpoint = OA_DM_38M()
|
| 50 |
model, collater, tokenizer, scheme = checkpoint
|
|
|
|
| 59 |
"new_end_index": new_end_idx
|
| 60 |
}
|
| 61 |
|
| 62 |
+
return generated_scaffold_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
usg_app = gr.Interface(
|
| 65 |
fn=make_uncond_seq,
|
| 66 |
inputs=[
|
| 67 |
+
gr.Slider(10, 250, step=1, label = "Sequence Length"),
|
| 68 |
+
gr.Dropdown(["EvoDiff-Seq-OADM 38M", "EvoDiff-D3PM-Uniform 38M"], value="EvoDiff-Seq-OADM 38M", type="value", label = "Model")
|
|
|
|
| 69 |
],
|
| 70 |
outputs=[
|
| 71 |
+
"text"
|
|
|
|
| 72 |
],
|
| 73 |
title = "Unconditional sequence generation",
|
| 74 |
description="Generate a sequence with `EvoDiff-Seq-OADM 38M` (smaller/faster) or `EvoDiff-D3PM-Uniform 38M` (larger/slower) models."
|
|
|
|
| 77 |
csg_app = gr.Interface(
|
| 78 |
fn=make_cond_seq,
|
| 79 |
inputs=[
|
| 80 |
+
gr.Slider(10, 250, label = "Sequence Length"),
|
| 81 |
gr.File(file_types=["a3m"], label = "MSA File"),
|
| 82 |
+
gr.Number(value=64, placeholder=64, precision=0, label = "Number of Sequences to Sample"),
|
| 83 |
+
gr.Dropdown(["EvoDiff-MSA"], value="EvoDiff-MSA", type="value", label = "Model")
|
|
|
|
| 84 |
],
|
| 85 |
outputs=[
|
| 86 |
+
"text"
|
|
|
|
| 87 |
],
|
| 88 |
# examples=[["https://github.com/microsoft/evodiff/raw/main/examples/example_files/bfd_uniclust_hits.a3m"]],
|
| 89 |
title = "Conditional sequence generation",
|
|
|
|
| 96 |
gr.Textbox(placeholder="DQTERTVRSFEGRRTAPYLDSRNVLTIGYGHLLNRPGANKSWEGRLTSALPREFKQRLTELAASQLHETDVRLATARAQALYGSGAYFESVPVSLNDLWFDSVFNLGERKLLNWSGLRTKLESRDWGAAAKDLGRHTFGREPVSRRMAESMRMRRGIDLNHYNI", label = "Sequence"),
|
| 97 |
gr.Number(value=20, placeholder=20, precision=0, label = "Start Index"),
|
| 98 |
gr.Number(value=50, placeholder=50, precision=0, label = "End Index"),
|
| 99 |
+
gr.Dropdown(["EvoDiff-Seq"], value="EvoDiff-Seq", type="value", label = "Model")
|
|
|
|
| 100 |
],
|
| 101 |
outputs=[
|
| 102 |
+
"text"
|
|
|
|
| 103 |
],
|
| 104 |
title = "Inpainting IDRs",
|
| 105 |
description="Inpaining a new region inside a given sequence using the `EvoDiff-Seq` model."
|
|
|
|
| 112 |
gr.Textbox(value="[15, 51]", placeholder="[15, 51]", label = "Start Index (as list)"),
|
| 113 |
gr.Textbox(value="[34, 70]", placeholder="[34, 70]", label = "End Index (as list)"),
|
| 114 |
gr.Number(value=75, placeholder=75, precision=0, label = "Scaffold Length"),
|
| 115 |
+
gr.Dropdown(["EvoDiff-Seq", "EvoDiff-MSA"], value="EvoDiff-Seq", type="value", label = "Model")
|
|
|
|
| 116 |
],
|
| 117 |
outputs=[
|
| 118 |
+
"text"
|
|
|
|
| 119 |
],
|
| 120 |
title = "Scaffolding functional motifs",
|
| 121 |
description="Scaffolding a new functional motif inside a given PDB structure using the `EvoDiff-Seq` model."
|