Spaces:
Sleeping
Sleeping
Update AI_Agent/llm_adapters/hf_adapter.py
Browse files
AI_Agent/llm_adapters/hf_adapter.py
CHANGED
|
@@ -4,19 +4,36 @@ import torch
|
|
| 4 |
import asyncio
|
| 5 |
|
| 6 |
class HuggingFaceAdapter:
|
| 7 |
-
def __init__(self, model_name="
|
| 8 |
self.model_name = model_name
|
| 9 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 10 |
self.model = AutoModelForCausalLM.from_pretrained(
|
| 11 |
model_name,
|
| 12 |
-
|
| 13 |
-
device_map=None
|
| 14 |
)
|
| 15 |
|
| 16 |
-
async def generate(self, prompt: str, max_tokens=300):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
def _sync_generate():
|
| 18 |
-
inputs = self.tokenizer(prompt, return_tensors="pt")
|
| 19 |
-
outputs = self.model.generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 21 |
return text
|
| 22 |
|
|
|
|
| 4 |
import asyncio
|
| 5 |
|
| 6 |
class HuggingFaceAdapter:
|
| 7 |
+
def __init__(self, model_name="EleutherAI/gpt-neo-125M"):
|
| 8 |
self.model_name = model_name
|
| 9 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 10 |
self.model = AutoModelForCausalLM.from_pretrained(
|
| 11 |
model_name,
|
| 12 |
+
torch_dtype=torch.float32, # CPU-friendly
|
| 13 |
+
device_map=None # CPU only
|
| 14 |
)
|
| 15 |
|
| 16 |
+
async def generate(self, prompt: str, max_tokens=300, temperature=0.7, top_p=0.9, repetition_penalty=1.2):
|
| 17 |
+
"""
|
| 18 |
+
Generate text from prompt asynchronously.
|
| 19 |
+
|
| 20 |
+
Parameters:
|
| 21 |
+
prompt (str): Input text prompt.
|
| 22 |
+
max_tokens (int): Maximum number of new tokens.
|
| 23 |
+
temperature (float): Randomness, higher = more diverse.
|
| 24 |
+
top_p (float): Nucleus sampling.
|
| 25 |
+
repetition_penalty (float): >1 penalizes repeating tokens.
|
| 26 |
+
"""
|
| 27 |
def _sync_generate():
|
| 28 |
+
inputs = self.tokenizer(prompt, return_tensors="pt")
|
| 29 |
+
outputs = self.model.generate(
|
| 30 |
+
**inputs,
|
| 31 |
+
max_new_tokens=max_tokens,
|
| 32 |
+
temperature=temperature,
|
| 33 |
+
top_p=top_p,
|
| 34 |
+
repetition_penalty=repetition_penalty,
|
| 35 |
+
do_sample=True # enables sampling for more varied output
|
| 36 |
+
)
|
| 37 |
text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 38 |
return text
|
| 39 |
|