Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import pipeline
|
| 2 |
+
from tqdm import tqdm
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import streamlit as st
|
| 5 |
+
from io import StringIO
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def correct_text(uploaded_file, column_to_correct):
|
| 9 |
+
"""
|
| 10 |
+
Corrects text in the specified column using a text correction model.
|
| 11 |
+
|
| 12 |
+
Args:
|
| 13 |
+
uploaded_file: DataFrame containing the text to correct
|
| 14 |
+
column_to_correct: Index of the column to correct
|
| 15 |
+
Returns:
|
| 16 |
+
DataFrame with corrected text in a new column
|
| 17 |
+
"""
|
| 18 |
+
corrector = pipeline("text2text-generation",
|
| 19 |
+
model="sdadas/byt5-text-correction")
|
| 20 |
+
|
| 21 |
+
df = uploaded_file
|
| 22 |
+
progress_bar = st.progress(0)
|
| 23 |
+
status_text = st.text("Correcting text 🧠...")
|
| 24 |
+
|
| 25 |
+
for index, row in df.iterrows():
|
| 26 |
+
if pd.notna(row.iloc[column_to_correct]):
|
| 27 |
+
original_text = str(row.iloc[column_to_correct])
|
| 28 |
+
corrected_text = corrector(
|
| 29 |
+
"<es>" + original_text, max_length=1024)[0]['generated_text']
|
| 30 |
+
|
| 31 |
+
# Save corrected text only if different from original
|
| 32 |
+
if corrected_text != original_text:
|
| 33 |
+
df.loc[index, column_to_correct + 1] = corrected_text
|
| 34 |
+
|
| 35 |
+
progress = (index + 1) / len(df)
|
| 36 |
+
progress_bar.progress(progress)
|
| 37 |
+
status_text.text(f"Progress: {int(progress * 100)}% completed ")
|
| 38 |
+
|
| 39 |
+
return df
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def choose_columns(dataframe):
|
| 43 |
+
"""
|
| 44 |
+
Lets user select columns to correct and displays preview of data.
|
| 45 |
+
|
| 46 |
+
Args:
|
| 47 |
+
dataframe: Input DataFrame
|
| 48 |
+
Returns:
|
| 49 |
+
Selected column index or None if no selection
|
| 50 |
+
"""
|
| 51 |
+
st.write("Choose the columns to correct 🔍")
|
| 52 |
+
column_to_correct = st.selectbox(
|
| 53 |
+
"Select columns to correct", dataframe.columns)
|
| 54 |
+
|
| 55 |
+
if column_to_correct:
|
| 56 |
+
st.write("Preview of data in selected columns 👀:")
|
| 57 |
+
non_empty_data = dataframe[dataframe[column_to_correct].notna()]
|
| 58 |
+
st.dataframe(non_empty_data[column_to_correct].head())
|
| 59 |
+
|
| 60 |
+
if st.button("Correct Text"):
|
| 61 |
+
if column_to_correct is not None:
|
| 62 |
+
return dataframe.columns.get_loc(column_to_correct)
|
| 63 |
+
else:
|
| 64 |
+
st.error("Please select a column before correcting text ❌")
|
| 65 |
+
return None
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def main():
|
| 69 |
+
"""Main function to run the text correction application"""
|
| 70 |
+
st.title("CSV text Correction App ✔")
|
| 71 |
+
uploaded_file = st.file_uploader("Choose a CSV file 📄", type=["csv"])
|
| 72 |
+
if uploaded_file is not None:
|
| 73 |
+
try:
|
| 74 |
+
dataframe = pd.read_csv(uploaded_file, encoding='utf-8')
|
| 75 |
+
column_index = choose_columns(dataframe)
|
| 76 |
+
if column_index is not None:
|
| 77 |
+
st.write(correct_text(dataframe, column_index))
|
| 78 |
+
except UnicodeDecodeError:
|
| 79 |
+
st.error(
|
| 80 |
+
"Error: Unable to decode the file. Please check the file encoding or try another file.")
|
| 81 |
+
except Exception as e:
|
| 82 |
+
st.error(f"An unexpected error occurred: {e}")
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
if __name__ == "__main__":
|
| 86 |
+
main()
|