Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,19 +1,19 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import pipeline,
|
| 3 |
|
| 4 |
# Initialize the image classification pipeline
|
| 5 |
classifier = pipeline("image-classification", model="google/vit-base-patch16-224")
|
| 6 |
|
| 7 |
# Initialize the tokenizer and model for the generative text (GPT-like model)
|
| 8 |
-
model_name = "
|
| 9 |
-
tokenizer =
|
| 10 |
-
model =
|
| 11 |
|
| 12 |
def generate_tweet(label):
|
| 13 |
# Craft a prompt that naturally encourages engaging and relevant tweet content
|
| 14 |
prompt = f"write a tweet about {label}"
|
| 15 |
|
| 16 |
-
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
| 17 |
outputs = model.generate(inputs, max_length=280, num_return_sequences=1, no_repeat_ngram_size=2)
|
| 18 |
|
| 19 |
tweet = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
@@ -31,7 +31,7 @@ def predict(image):
|
|
| 31 |
return tweet
|
| 32 |
|
| 33 |
title = "Image Classifier to Generative Tweet"
|
| 34 |
-
description = "This demo recognizes and classifies images using the 'google/vit-base-patch16-224' model and generates a tweet about the top prediction using
|
| 35 |
input_component = gr.Image(type="pil", label="Upload an image here")
|
| 36 |
output_component = gr.Textbox(label="Generated Promotional Tweet")
|
| 37 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import pipeline, GPT2Tokenizer, GPT2LMHeadModel
|
| 3 |
|
| 4 |
# Initialize the image classification pipeline
|
| 5 |
classifier = pipeline("image-classification", model="google/vit-base-patch16-224")
|
| 6 |
|
| 7 |
# Initialize the tokenizer and model for the generative text (GPT-like model)
|
| 8 |
+
model_name = "gpt2" # Use GPT-2 model for demonstration
|
| 9 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
| 10 |
+
model = GPT2LMHeadModel.from_pretrained(model_name)
|
| 11 |
|
| 12 |
def generate_tweet(label):
|
| 13 |
# Craft a prompt that naturally encourages engaging and relevant tweet content
|
| 14 |
prompt = f"write a tweet about {label}"
|
| 15 |
|
| 16 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt", add_special_tokens=True)
|
| 17 |
outputs = model.generate(inputs, max_length=280, num_return_sequences=1, no_repeat_ngram_size=2)
|
| 18 |
|
| 19 |
tweet = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
| 31 |
return tweet
|
| 32 |
|
| 33 |
title = "Image Classifier to Generative Tweet"
|
| 34 |
+
description = "This demo recognizes and classifies images using the 'google/vit-base-patch16-224' model and generates a tweet about the top prediction using GPT-2 for generating creative and engaging content."
|
| 35 |
input_component = gr.Image(type="pil", label="Upload an image here")
|
| 36 |
output_component = gr.Textbox(label="Generated Promotional Tweet")
|
| 37 |
|