Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,13 +7,15 @@ def predict(image):
|
|
| 7 |
predictions = classifier(image)
|
| 8 |
# Sort predictions based on confidence and select the top one
|
| 9 |
top_prediction = sorted(predictions, key=lambda x: x['score'], reverse=True)[0]
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
| 12 |
return tweet_text
|
| 13 |
|
| 14 |
-
title = "Image Classifier to Tweet"
|
| 15 |
-
description = "This demo recognizes and classifies images using the 'google/vit-base-patch16-224' model
|
| 16 |
input_component = gr.Image(type="pil", label="Upload an image here")
|
| 17 |
-
output_component = gr.Textbox(label="
|
| 18 |
|
| 19 |
gr.Interface(fn=predict, inputs=input_component, outputs=output_component, title=title, description=description).launch()
|
|
|
|
| 7 |
predictions = classifier(image)
|
| 8 |
# Sort predictions based on confidence and select the top one
|
| 9 |
top_prediction = sorted(predictions, key=lambda x: x['score'], reverse=True)[0]
|
| 10 |
+
|
| 11 |
+
# Generate a promotional tweet based on the top prediction
|
| 12 |
+
tweet_template = "Check out this amazing {label}! 📸✨ Explore more about it and let your curiosity lead you to discover wonders."
|
| 13 |
+
tweet_text = tweet_template.format(label=top_prediction['label'].split(',')[0]) # Using split to clean up label if necessary
|
| 14 |
return tweet_text
|
| 15 |
|
| 16 |
+
title = "Image Classifier to Promotional Tweet"
|
| 17 |
+
description = "This demo recognizes and classifies images using the 'google/vit-base-patch16-224' model. Below, you'll see a generated promotional tweet based on the top prediction. Your task: Upload an image, and let's write a tweet about it!"
|
| 18 |
input_component = gr.Image(type="pil", label="Upload an image here")
|
| 19 |
+
output_component = gr.Textbox(label="Generated Promotional Tweet", placeholder="Write a tweet about the image")
|
| 20 |
|
| 21 |
gr.Interface(fn=predict, inputs=input_component, outputs=output_component, title=title, description=description).launch()
|