Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import pipeline | |
| # Specify the model and revision explicitly | |
| model_name = "distilbert-base-uncased-finetuned-sst-2-english" | |
| revision = "af0f99b" | |
| # Load the sentiment analysis pipeline with the specified model and revision | |
| sentiment_pipeline = pipeline("sentiment-analysis", model=model_name, revision=revision) | |
| def predict_sentiment(text): | |
| """ | |
| Predicts the sentiment of the input text. | |
| Returns the label (POSITIVE/NEGATIVE) and the confidence score. | |
| """ | |
| result = sentiment_pipeline(text)[0] | |
| label = result['label'] | |
| confidence = round(result['score'], 4) | |
| return f"Sentiment: {label}, Confidence: {confidence}" | |
| # Create a Gradio interface | |
| interface = gr.Interface(fn=predict_sentiment, | |
| inputs=gr.Textbox(lines=2, placeholder="Enter Text Here..."), | |
| outputs="text", | |
| title="Simple Text Sentiment Analysis", | |
| description="A simple text sentiment analysis tool using Hugging Face's transformers.") | |
| # Launch the application | |
| interface.launch() | |