Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +2 -9
src/streamlit_app.py
CHANGED
|
@@ -1,9 +1,3 @@
|
|
| 1 |
-
"""
|
| 2 |
-
Enhanced Streamlit app for biomedical ontology retrieval on Hugging Face
|
| 3 |
-
Supports multiple vocabularies with precomputed embeddings and t-SNE visualization
|
| 4 |
-
Now supports multiple embedding models: BRIDGE, SapBERT, and OpenAI
|
| 5 |
-
"""
|
| 6 |
-
|
| 7 |
import streamlit as st
|
| 8 |
import pandas as pd
|
| 9 |
import numpy as np
|
|
@@ -34,7 +28,6 @@ MODELS_CONFIG = {
|
|
| 34 |
"openai": {
|
| 35 |
"display_name": "OpenAI",
|
| 36 |
"type": "openai",
|
| 37 |
-
# name of the embeddings model to use (must match your account/model availability)
|
| 38 |
"model": "text-embedding-3-large"
|
| 39 |
}
|
| 40 |
}
|
|
@@ -487,7 +480,7 @@ def main():
|
|
| 487 |
# Info in sidebar
|
| 488 |
st.sidebar.success(f"β Loaded {len(df_concepts)} concepts")
|
| 489 |
st.sidebar.info(f"π Active vocabularies: {len(selected_vocabs)}")
|
| 490 |
-
st.sidebar.info(f"
|
| 491 |
|
| 492 |
# Display vocabulary statistics
|
| 493 |
with st.sidebar.expander("π Vocabulary Statistics"):
|
|
@@ -499,7 +492,7 @@ def main():
|
|
| 499 |
st.subheader("π Query")
|
| 500 |
user_input = st.text_area(
|
| 501 |
"Enter clinical or biomedical text:",
|
| 502 |
-
placeholder="e.g
|
| 503 |
height=120,
|
| 504 |
help="Enter any clinical description or biomedical concept to find similar codes"
|
| 505 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
import numpy as np
|
|
|
|
| 28 |
"openai": {
|
| 29 |
"display_name": "OpenAI",
|
| 30 |
"type": "openai",
|
|
|
|
| 31 |
"model": "text-embedding-3-large"
|
| 32 |
}
|
| 33 |
}
|
|
|
|
| 480 |
# Info in sidebar
|
| 481 |
st.sidebar.success(f"β Loaded {len(df_concepts)} concepts")
|
| 482 |
st.sidebar.info(f"π Active vocabularies: {len(selected_vocabs)}")
|
| 483 |
+
st.sidebar.info(f"Model: {selected_model_name}\n Device: {device}")
|
| 484 |
|
| 485 |
# Display vocabulary statistics
|
| 486 |
with st.sidebar.expander("π Vocabulary Statistics"):
|
|
|
|
| 492 |
st.subheader("π Query")
|
| 493 |
user_input = st.text_area(
|
| 494 |
"Enter clinical or biomedical text:",
|
| 495 |
+
placeholder="e.g. "Migraine with aura" or "ICD10 G43.1"",
|
| 496 |
height=120,
|
| 497 |
help="Enter any clinical description or biomedical concept to find similar codes"
|
| 498 |
)
|