File size: 2,666 Bytes
87e737d
 
526b92b
87e737d
 
 
 
 
 
 
 
 
 
11cdd60
526b92b
e46e3cb
11cdd60
 
 
526b92b
11cdd60
526b92b
11cdd60
526b92b
11cdd60
526b92b
11cdd60
526b92b
11cdd60
526b92b
11cdd60
526b92b
11cdd60
526b92b
11cdd60
526b92b
11cdd60
e46e3cb
11cdd60
 
526b92b
11cdd60
46f0bee
 
526b92b
11cdd60
526b92b
 
 
 
11cdd60
46f0bee
 
 
 
 
 
 
 
 
 
526b92b
11cdd60
526b92b
11cdd60
6b3c953
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
title: Pcam Project
emoji: 🧬
colorFrom: green
colorTo: red
sdk: gradio
sdk_version: 5.34.1
app_file: app.py
pinned: false
license: gpl-3.0
short_description: 'PCam Dataset: Tumor Detection Image Binary Classification'
---

# 🧬 PCam Dataset: Tumor Detection via Binary Image Classification
[![Hugging Face Spaces](https://img.shields.io/badge/πŸ€—%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/eloise54/pcam_project)
[![Kaggle Notebook](https://img.shields.io/badge/Kaggle-Notebook-blue?logo=kaggle)](https://www.kaggle.com/code/eloisedai/pcam-tumor-detection-full-pytorch-pipeline)
[![View](https://img.shields.io/badge/View-Notebook-blue?style=flat&logo=jupyter)](https://gitlab.com/robotics2ai/pcam_project/-/blob/main/PCAM-pipeline.ipynb?ref_type=heads)
[![License: GPL-3.0](https://img.shields.io/badge/License-GPLv3-blue.svg)](LICENSE)

## ⚑ Try it now ! With gradio ⚑ 

On Hugging Face Spaces:

[![Hugging Face Spaces](https://img.shields.io/badge/πŸ€—%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/eloise54/pcam_project)

Or start the local gradio app

```python app.py```

## The full pytorch training jupter notebook is here:

You can view it here :

[![View](https://img.shields.io/badge/View-Notebook-blue?style=flat&logo=jupyter)](https://gitlab.com/robotics2ai/pcam_project/-/blob/main/PCAM-pipeline.ipynb?ref_type=heads)

Or execute it on kaggle:

[![Kaggle Notebook](https://img.shields.io/badge/Kaggle-Notebook-blue?logo=kaggle)](https://www.kaggle.com/code/eloisedai/pcam-tumor-detection-full-pytorch-pipeline)


## πŸ“Š Dataset Overview

https://github.com/basveeling/pcam

The **PatchCamelyon (PCam)** benchmark is a challenging image classification dataset designed for breast cancer detection tasks.

- πŸ“¦ **Total images**: 327,680 color patches  
- πŸ–ΌοΈ **Image size**: 96 Γ— 96 pixels
- πŸ§ͺ **Source**: Histopathologic scans of lymph node sections  
- 🏷️ **Labels**: Binary β€” A positive (1) label indicates that the center 32x32px region of a patch contains at least one pixel of tumor tissue. Tumor tissue in the outer region of the patch does not influence the label.

```
B. S. Veeling, J. Linmans, J. Winkens, T. Cohen, M. Welling. "Rotation Equivariant CNNs for Digital Pathology". arXiv:1806.03962
```

```
Ehteshami Bejnordi et al. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA: The Journal of the American Medical Association, 318(22), 2199–2210. doi:jama.2017.14585
```

Under CC0 License

## Results

The submission on kaggle with the model trained on this notebook is 

```Public score: 0.9733```