--- title: Pcam Project emoji: ๐Ÿงฌ colorFrom: green colorTo: red sdk: gradio sdk_version: 5.34.1 app_file: app.py pinned: false license: gpl-3.0 short_description: 'PCam Dataset: Tumor Detection Image Binary Classification' --- # ๐Ÿงฌ PCam Dataset: Tumor Detection via Binary Image Classification [![Hugging Face Spaces](https://img.shields.io/badge/๐Ÿค—%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/eloise54/pcam_project) [![Kaggle Notebook](https://img.shields.io/badge/Kaggle-Notebook-blue?logo=kaggle)](https://www.kaggle.com/code/eloisedai/pcam-tumor-detection-full-pytorch-pipeline) [![View](https://img.shields.io/badge/View-Notebook-blue?style=flat&logo=jupyter)](https://gitlab.com/robotics2ai/pcam_project/-/blob/main/PCAM-pipeline.ipynb?ref_type=heads) [![License: GPL-3.0](https://img.shields.io/badge/License-GPLv3-blue.svg)](LICENSE) ## โšก Try it now ! With gradio โšก On Hugging Face Spaces: [![Hugging Face Spaces](https://img.shields.io/badge/๐Ÿค—%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/eloise54/pcam_project) Or start the local gradio app ```python app.py``` ## The full pytorch training jupter notebook is here: You can view it here : [![View](https://img.shields.io/badge/View-Notebook-blue?style=flat&logo=jupyter)](https://gitlab.com/robotics2ai/pcam_project/-/blob/main/PCAM-pipeline.ipynb?ref_type=heads) Or execute it on kaggle: [![Kaggle Notebook](https://img.shields.io/badge/Kaggle-Notebook-blue?logo=kaggle)](https://www.kaggle.com/code/eloisedai/pcam-tumor-detection-full-pytorch-pipeline) ## ๐Ÿ“Š Dataset Overview https://github.com/basveeling/pcam The **PatchCamelyon (PCam)** benchmark is a challenging image classification dataset designed for breast cancer detection tasks. - ๐Ÿ“ฆ **Total images**: 327,680 color patches - ๐Ÿ–ผ๏ธ **Image size**: 96 ร— 96 pixels - ๐Ÿงช **Source**: Histopathologic scans of lymph node sections - ๐Ÿท๏ธ **Labels**: Binary โ€” A positive (1) label indicates that the center 32x32px region of a patch contains at least one pixel of tumor tissue. Tumor tissue in the outer region of the patch does not influence the label. ``` B. S. Veeling, J. Linmans, J. Winkens, T. Cohen, M. Welling. "Rotation Equivariant CNNs for Digital Pathology". arXiv:1806.03962 ``` ``` Ehteshami Bejnordi et al. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA: The Journal of the American Medical Association, 318(22), 2199โ€“2210. doi:jama.2017.14585 ``` Under CC0 License ## Results The submission on kaggle with the model trained on this notebook is ```Public score: 0.9733```