File size: 9,986 Bytes
2a97c1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import gradio as gr
import base64
import json
import os
from PIL import Image
import io
from handler import EndpointHandler

handler = EndpointHandler()

def classify_image(image, top_k=10):
    """
    Main classification function for public interface.
    """
    if image is None:
        return None, "Please upload an image"
    
    try:
        # Convert PIL image to base64
        buffered = io.BytesIO()
        image.save(buffered, format="PNG")
        img_b64 = base64.b64encode(buffered.getvalue()).decode()
        
        # Call handler
        result = handler({
            "inputs": {
                "image": img_b64,
                "top_k": int(top_k)
            }
        })
        
        # Format results for display
        if isinstance(result, list):
            # Create formatted output
            output_text = "**Top {} Classifications:**\n\n".format(len(result))
            
            # Create a dictionary for the bar chart
            chart_data = {}
            
            for i, item in enumerate(result, 1):
                score_pct = item['score'] * 100
                output_text += f"{i}. **{item['label']}** (ID: {item['id']}): {score_pct:.2f}%\n"
                chart_data[item['label']] = item['score']
            
            return chart_data, output_text
        else:
            return None, f"Error: {result.get('error', 'Unknown error')}"
            
    except Exception as e:
        return None, f"Error: {str(e)}"

def upsert_labels_admin(admin_token, new_items_json):
    """
    Admin function to add new labels.
    """
    if not admin_token:
        return "Error: Admin token required"
    
    try:
        # Parse the JSON input
        items = json.loads(new_items_json) if new_items_json else []
        
        result = handler({
            "inputs": {
                "op": "upsert_labels",
                "token": admin_token,
                "items": items
            }
        })
        
        if result.get("status") == "ok":
            return f"βœ… Success! Added {result.get('added', 0)} new labels. Current version: {result.get('labels_version', 'unknown')}"
        elif result.get("error") == "unauthorized":
            return "❌ Error: Invalid admin token"
        else:
            return f"❌ Error: {result.get('detail', result.get('error', 'Unknown error'))}"
            
    except json.JSONDecodeError:
        return "❌ Error: Invalid JSON format"
    except Exception as e:
        return f"❌ Error: {str(e)}"

def reload_labels_admin(admin_token, version):
    """
    Admin function to reload a specific label version.
    """
    if not admin_token:
        return "Error: Admin token required"
    
    try:
        result = handler({
            "inputs": {
                "op": "reload_labels",
                "token": admin_token,
                "version": int(version) if version else 1
            }
        })
        
        if result.get("status") == "ok":
            return f"βœ… Labels reloaded successfully! Current version: {result.get('labels_version', 'unknown')}"
        elif result.get("status") == "nochange":
            return f"ℹ️ No change needed. Current version: {result.get('labels_version', 'unknown')}"
        elif result.get("error") == "unauthorized":
            return "❌ Error: Invalid admin token"
        elif result.get("error") == "invalid_version":
            return "❌ Error: Invalid version number"
        else:
            return f"❌ Error: {result.get('error', 'Unknown error')}"
            
    except Exception as e:
        return f"❌ Error: {str(e)}"

def get_current_stats():
    """
    Get current label statistics.
    """
    try:
        num_labels = len(handler.class_ids) if hasattr(handler, 'class_ids') else 0
        version = getattr(handler, 'labels_version', 1)
        device = handler.device if hasattr(handler, 'device') else "unknown"
        
        stats = f"""
        **Current Statistics:**
        - Number of labels: {num_labels}
        - Labels version: {version}
        - Device: {device}
        - Model: MobileCLIP-B
        """
        
        if hasattr(handler, 'class_names') and len(handler.class_names) > 0:
            stats += f"\n- Sample labels: {', '.join(handler.class_names[:5])}"
            if len(handler.class_names) > 5:
                stats += "..."
        
        return stats
    except Exception as e:
        return f"Error getting stats: {str(e)}"

# Create Gradio interface
with gr.Blocks(title="MobileCLIP Image Classifier") as demo:
    gr.Markdown("""
    # πŸ–ΌοΈ MobileCLIP-B Zero-Shot Image Classifier
    
    Upload an image to classify it using MobileCLIP-B model with dynamic label management.
    """)
    
    with gr.Tab("πŸ” Image Classification"):
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(
                    type="pil",
                    label="Upload Image"
                )
                top_k_slider = gr.Slider(
                    minimum=1,
                    maximum=50,
                    value=10,
                    step=1,
                    label="Number of top results to show"
                )
                classify_btn = gr.Button("πŸš€ Classify Image", variant="primary")
            
            with gr.Column():
                output_chart = gr.BarPlot(
                    label="Classification Confidence",
                    x_label="Label",
                    y_label="Confidence",
                    vertical=False,
                    height=400
                )
                output_text = gr.Markdown(label="Classification Results")
        
        gr.Examples(
            examples=[
                ["https://raw.githubusercontent.com/gradio-app/gradio/main/demo/image_classifier/examples/cheetah.jpg"],
                ["https://raw.githubusercontent.com/gradio-app/gradio/main/demo/image_classifier/examples/elephant.jpg"],
                ["https://raw.githubusercontent.com/gradio-app/gradio/main/demo/image_classifier/examples/giraffe.jpg"]
            ],
            inputs=input_image,
            label="Example Images"
        )
        
        classify_btn.click(
            classify_image,
            inputs=[input_image, top_k_slider],
            outputs=[output_chart, output_text]
        )
    
    with gr.Tab("πŸ”§ Admin Panel"):
        gr.Markdown("""
        ### Admin Functions
        **Note:** Requires admin token (set via environment variable `ADMIN_TOKEN`)
        """)
        
        with gr.Row():
            admin_token_input = gr.Textbox(
                label="Admin Token",
                type="password",
                placeholder="Enter admin token"
            )
        
        with gr.Accordion("πŸ“Š Current Statistics", open=True):
            stats_display = gr.Markdown(value=get_current_stats())
            refresh_stats_btn = gr.Button("πŸ”„ Refresh Stats")
            refresh_stats_btn.click(
                get_current_stats,
                outputs=stats_display
            )
        
        with gr.Accordion("βž• Add New Labels", open=False):
            gr.Markdown("""
            Add new labels by providing JSON array:
            ```json
            [
                {"id": 100, "name": "new_object", "prompt": "a photo of a new_object"},
                {"id": 101, "name": "another_object", "prompt": "a photo of another_object"}
            ]
            ```
            """)
            new_items_input = gr.Code(
                label="New Items JSON",
                language="json",
                lines=5,
                value='[\n  {"id": 100, "name": "example", "prompt": "a photo of example"}\n]'
            )
            upsert_btn = gr.Button("βž• Add Labels", variant="primary")
            upsert_output = gr.Markdown()
            
            upsert_btn.click(
                upsert_labels_admin,
                inputs=[admin_token_input, new_items_input],
                outputs=upsert_output
            )
        
        with gr.Accordion("πŸ”„ Reload Label Version", open=False):
            gr.Markdown("Reload labels from a specific version stored in the Hub")
            version_input = gr.Number(
                label="Version Number",
                value=1,
                precision=0
            )
            reload_btn = gr.Button("πŸ”„ Reload Version", variant="primary")
            reload_output = gr.Markdown()
            
            reload_btn.click(
                reload_labels_admin,
                inputs=[admin_token_input, version_input],
                outputs=reload_output
            )
    
    with gr.Tab("ℹ️ About"):
        gr.Markdown("""
        ## About MobileCLIP-B Classifier
        
        This Space provides a web interface for Apple's MobileCLIP-B model, optimized for fast zero-shot image classification.
        
        ### Features:
        - πŸš€ **Fast inference**: < 30ms on GPU
        - 🏷️ **Dynamic labels**: Add/update labels without redeployment
        - πŸ”„ **Version control**: Track and reload label versions
        - πŸ“Š **Visual results**: Bar charts and confidence scores
        
        ### Environment Variables (set in Space Settings):
        - `ADMIN_TOKEN`: Secret token for admin operations
        - `HF_LABEL_REPO`: Hub repository for label storage (e.g., "username/labels")
        - `HF_WRITE_TOKEN`: Token with write permissions to label repo
        - `HF_READ_TOKEN`: Token with read permissions (optional, defaults to write token)
        
        ### Model Details:
        - **Architecture**: MobileCLIP-B with MobileOne blocks
        - **Text Encoder**: Transformer-based, 77 token context
        - **Image Size**: 224x224
        - **Embedding Dim**: 512
        
        ### License:
        Model weights are licensed under Apple Sample Code License (ASCL).
        """)

if __name__ == "__main__":
    demo.launch()