File size: 19,539 Bytes
1f6a2dc 7f45a02 1f6a2dc 2a97c1d 1f6a2dc 7466f1c 4b44c42 7466f1c 4b44c42 7466f1c 4b44c42 7466f1c 4b44c42 7466f1c 1f6a2dc 7466f1c 1f6a2dc 7466f1c 1f6a2dc 7466f1c 1f6a2dc 2a97c1d 1f6a2dc 42efcad 1f6a2dc 42efcad 1f6a2dc 42efcad 1f6a2dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
import contextlib, io, base64, torch, json, os, threading
from PIL import Image
import open_clip
from huggingface_hub import hf_hub_download, create_commit, CommitOperationAdd
from safetensors.torch import save_file, load_file
from reparam import reparameterize_model
ADMIN_TOKEN = os.getenv("ADMIN_TOKEN", "")
HF_LABEL_REPO = os.getenv("HF_LABEL_REPO", "") # e.g. "org/mobileclip-labels"
HF_WRITE_TOKEN = os.getenv("HF_WRITE_TOKEN", "")
HF_READ_TOKEN = os.getenv("HF_READ_TOKEN", HF_WRITE_TOKEN)
def _fingerprint(device: str, dtype: torch.dtype) -> dict:
return {
"model_id": "MobileCLIP-B",
"pretrained": "datacompdr",
"open_clip": getattr(open_clip, "__version__", "unknown"),
"torch": torch.__version__,
"cuda": torch.version.cuda if torch.cuda.is_available() else None,
"dtype_runtime": str(dtype),
"text_norm": "L2",
"logit_scale": 100.0,
}
class EndpointHandler:
def __init__(self, path: str = ""):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.dtype = torch.float16 if self.device == "cuda" else torch.float32
# 1) Load model + transforms
model, _, self.preprocess = open_clip.create_model_and_transforms(
"MobileCLIP-B", pretrained="datacompdr"
)
model.eval()
model = reparameterize_model(model)
model.to(self.device)
if self.device == "cuda":
model = model.to(torch.float16)
self.model = model
self.tokenizer = open_clip.get_tokenizer("MobileCLIP-B")
self.fingerprint = _fingerprint(self.device, self.dtype)
self._lock = threading.Lock()
# 2) Try to load snapshot from Hub; else seed from items.json
loaded = False
if HF_LABEL_REPO:
with contextlib.suppress(Exception):
loaded = self._load_snapshot_from_hub_latest()
if not loaded:
items_path = "items.json" if not path else f"{path}/items.json"
with open(items_path, "r", encoding="utf-8") as f:
items = json.load(f)
prompts = [it["prompt"] for it in items]
self.class_ids = [int(it["id"]) for it in items]
self.class_names = [it["name"] for it in items]
with torch.no_grad():
toks = self.tokenizer(prompts).to(self.device)
feats = self.model.encode_text(toks)
feats = feats / feats.norm(dim=-1, keepdim=True)
self.text_features_cpu = feats.detach().cpu().to(torch.float32).contiguous()
self._to_device()
self.labels_version = 1
def __call__(self, data):
payload = data.get("inputs", data)
# Admin op: upsert_labels
op = payload.get("op")
if op == "upsert_labels":
if payload.get("token") != ADMIN_TOKEN:
return {"error": "unauthorized"}
items = payload.get("items", []) or []
added = self._upsert_items(items)
if added > 0:
new_ver = int(getattr(self, "labels_version", 1)) + 1
try:
self._persist_snapshot_to_hub(new_ver)
self.labels_version = new_ver
except Exception as e:
return {"status": "error", "added": added, "detail": str(e)}
return {"status": "ok", "added": added, "labels_version": getattr(self, "labels_version", 1)}
# Admin op: reload_labels
if op == "reload_labels":
if payload.get("token") != ADMIN_TOKEN:
return {"error": "unauthorized"}
try:
ver = int(payload.get("version"))
except Exception:
return {"error": "invalid_version"}
ok = self._load_snapshot_from_hub_version(ver)
return {"status": "ok" if ok else "nochange", "labels_version": getattr(self, "labels_version", 0)}
# Admin op: remove_labels
if op == "remove_labels":
if payload.get("token") != ADMIN_TOKEN:
return {"error": "unauthorized"}
ids_to_remove = set(payload.get("ids", []))
if not ids_to_remove:
return {"error": "no_ids_provided"}
removed = self._remove_items(ids_to_remove)
if removed > 0:
new_ver = int(getattr(self, "labels_version", 1)) + 1
try:
self._persist_snapshot_to_hub(new_ver)
self.labels_version = new_ver
except Exception as e:
return {"status": "error", "removed": removed, "detail": str(e)}
return {"status": "ok", "removed": removed, "labels_version": getattr(self, "labels_version", 1)}
# Freshness guard (optional)
min_ver = payload.get("min_labels_version")
if isinstance(min_ver, int) and min_ver > getattr(self, "labels_version", 0):
with contextlib.suppress(Exception):
self._load_snapshot_from_hub_version(min_ver)
# Classification path (unchanged contract)
img_b64 = payload["image"]
image = Image.open(io.BytesIO(base64.b64decode(img_b64))).convert("RGB")
img_tensor = self.preprocess(image).unsqueeze(0).to(self.device)
if self.device == "cuda":
img_tensor = img_tensor.to(torch.float16)
with torch.no_grad():
img_feat = self.model.encode_image(img_tensor)
img_feat /= img_feat.norm(dim=-1, keepdim=True)
probs = (100.0 * img_feat @ self.text_features.T).softmax(dim=-1)[0]
results = zip(self.class_ids, self.class_names, probs.detach().cpu().tolist())
top_k = int(payload.get("top_k", len(self.class_ids)))
return sorted(
[{"id": i, "label": name, "score": float(p)} for i, name, p in results],
key=lambda x: x["score"],
reverse=True,
)[:top_k]
# ------------- helpers -------------
def _encode_text(self, prompts):
with torch.no_grad():
toks = self.tokenizer(prompts).to(self.device)
feats = self.model.encode_text(toks)
feats = feats / feats.norm(dim=-1, keepdim=True)
return feats
def _to_device(self):
self.text_features = self.text_features_cpu.to(
self.device, dtype=(torch.float16 if self.device == "cuda" else torch.float32)
)
def _upsert_items(self, new_items):
if not new_items:
return 0
with self._lock:
# Get ALL existing IDs and names from current state
known_ids = set(getattr(self, "class_ids", []))
# Create lowercase set for case-insensitive comparison
known_names_lower = set(name.lower() for name in getattr(self, "class_names", []))
# Filter items, checking against both ID and name (case-insensitive)
batch = []
for it in new_items:
item_id = int(it.get("id"))
item_name = it.get("name")
# Skip if either ID or name already exists (case-insensitive for names)
if item_id in known_ids:
continue # Skip duplicate ID
elif item_name.lower() in known_names_lower:
continue # Skip duplicate name (case-insensitive)
else:
batch.append(it)
if not batch:
return 0
# Process the filtered batch
prompts = [it["prompt"] for it in batch]
feats = self._encode_text(prompts).detach().cpu().to(torch.float32)
# Update the persistent state
if not hasattr(self, "text_features_cpu"):
self.text_features_cpu = feats.contiguous()
self.class_ids = [int(it["id"]) for it in batch]
self.class_names = [it["name"] for it in batch]
else:
self.text_features_cpu = torch.cat([self.text_features_cpu, feats], dim=0).contiguous()
self.class_ids.extend([int(it["id"]) for it in batch])
self.class_names.extend([it["name"] for it in batch])
self._to_device()
return len(batch)
def _remove_items(self, ids_to_remove):
if not ids_to_remove or not hasattr(self, "class_ids"):
return 0
with self._lock:
ids_to_remove = set(int(id) for id in ids_to_remove)
# Find indices to keep
indices_to_keep = []
removed_count = 0
for i, class_id in enumerate(self.class_ids):
if class_id not in ids_to_remove:
indices_to_keep.append(i)
else:
removed_count += 1
if removed_count == 0:
return 0
# Filter the tensors and lists
if indices_to_keep:
self.text_features_cpu = self.text_features_cpu[indices_to_keep].contiguous()
self.class_ids = [self.class_ids[i] for i in indices_to_keep]
self.class_names = [self.class_names[i] for i in indices_to_keep]
else:
# All items removed, reset to empty
self.text_features_cpu = torch.empty(0, self.text_features_cpu.shape[1])
self.class_ids = []
self.class_names = []
self._to_device()
return removed_count
def _persist_snapshot_to_hub(self, version: int):
if not HF_LABEL_REPO:
raise RuntimeError("HF_LABEL_REPO not set")
if not HF_WRITE_TOKEN:
raise RuntimeError("HF_WRITE_TOKEN not set for publishing")
emb_path = "/tmp/embeddings.safetensors"
meta_path = "/tmp/meta.json"
latest_bytes = io.BytesIO(json.dumps({"version": int(version)}).encode("utf-8"))
save_file({"embeddings": self.text_features_cpu.to(torch.float32)}, emb_path)
meta = {
"items": [{"id": int(i), "name": n} for i, n in zip(self.class_ids, self.class_names)],
"fingerprint": self.fingerprint,
"dims": int(self.text_features_cpu.shape[1]),
"count": int(self.text_features_cpu.shape[0]),
"version": int(version),
}
with open(meta_path, "w", encoding="utf-8") as f:
json.dump(meta, f)
ops = [
CommitOperationAdd(
path_in_repo=f"snapshots/v{version}/embeddings.safetensors",
path_or_fileobj=emb_path
),
CommitOperationAdd(
path_in_repo=f"snapshots/v{version}/meta.json",
path_or_fileobj=meta_path
),
CommitOperationAdd(
path_in_repo="snapshots/latest.json",
path_or_fileobj=latest_bytes
),
]
create_commit(
repo_id=HF_LABEL_REPO,
repo_type="dataset",
operations=ops,
token=HF_WRITE_TOKEN,
commit_message=f"labels v{version}",
)
def _load_snapshot_from_hub_version(self, version: int) -> bool:
if not HF_LABEL_REPO:
return False
with self._lock:
emb_p = hf_hub_download(
HF_LABEL_REPO,
f"snapshots/v{version}/embeddings.safetensors",
repo_type="dataset",
token=HF_READ_TOKEN,
force_download=True,
)
meta_p = hf_hub_download(
HF_LABEL_REPO,
f"snapshots/v{version}/meta.json",
repo_type="dataset",
token=HF_READ_TOKEN,
force_download=True,
)
meta = json.load(open(meta_p, "r", encoding="utf-8"))
if meta.get("fingerprint") != self.fingerprint:
raise RuntimeError("Embedding/model fingerprint mismatch")
feats = load_file(emb_p)["embeddings"] # float32 CPU
self.text_features_cpu = feats.contiguous()
self.class_ids = [int(x["id"]) for x in meta.get("items", [])]
self.class_names = [x["name"] for x in meta.get("items", [])]
self.labels_version = int(meta.get("version", version))
self._to_device()
return True
def _load_snapshot_from_hub_latest(self) -> bool:
if not HF_LABEL_REPO:
return False
try:
latest_p = hf_hub_download(
HF_LABEL_REPO,
"snapshots/latest.json",
repo_type="dataset",
token=HF_READ_TOKEN,
)
except Exception:
return False
latest = json.load(open(latest_p, "r", encoding="utf-8"))
ver = int(latest.get("version", 0))
if ver <= 0:
return False
return self._load_snapshot_from_hub_version(ver)
# """
# MobileCLIP‑B Zero‑Shot Image Classifier (Hugging Face Inference Endpoint)
# ===========================================================================
# * One container instance is created per replica; the `EndpointHandler`
# object below is instantiated exactly **once** at start‑up.
# * At request time (`__call__`) we receive a base‑64‑encoded image, run a
# **single forward pass**, and return class probabilities.
# Design choices
# --------------
# 1. **Model & transform come from OpenCLIP**
# This guarantees we apply **identical preprocessing** to what the model
# was trained with (224 × 224 crop + mean/std normalisation).
# 2. **Re‑parameterisation for inference**
# MobileCLIP uses MobileOne blocks that have extra convolution branches
# for training; `reparameterize_model` fuses them so inference is fast
# and deterministic.
# 3. **Text embeddings are cached**
# The class “prompts” (e.g. `"a photo of a cat"`) are encoded **once at
# start‑up**. Each request therefore encodes *only* the image and
# performs a single matrix multiplication.
# 4. **Mixed precision on GPU**
# If the container has CUDA, we cast the model **and** inputs to
# `float16`. That halves memory and roughly doubles throughput on most
# modern GPUs. On CPU we stay in `float32` for numerical stability.
# """
# import contextlib, io, base64, json
# from pathlib import Path
# from typing import Any, Dict, List
# import torch
# from PIL import Image
# import open_clip
# from reparam import reparameterize_model # local copy (~60 LoC) of Apple’s helper
# class EndpointHandler:
# """
# Hugging Face entry‑point. The toolkit will instantiate this class
# once and call it for every HTTP request.
# Parameters
# ----------
# path : str, optional
# Root directory of the repository. HF mounts the code under
# `/repository`; we use this path to locate `items.json`.
# """
# # ------------------------------------------------------------------ #
# # INITIALISATION (runs **once**) #
# # ------------------------------------------------------------------ #
# def __init__(self, path: str = "") -> None:
# self.device = "cuda" if torch.cuda.is_available() else "cpu"
# # 1️⃣ Load MobileCLIP‑B weights & transforms -------------------
# # `pretrained="datacompdr"` makes OpenCLIP download the
# # official checkpoint from the Hub (cached in the image layer).
# model, _, self.preprocess = open_clip.create_model_and_transforms(
# "MobileCLIP-B", pretrained="datacompdr"
# )
# model.eval() # disable dropout / BN updates
# model = reparameterize_model(model) # fuse MobileOne branches
# model.to(self.device)
# if self.device == "cuda":
# model = model.to(torch.float16) # FP16 for throughput
# self.model = model # hold a reference
# # 2️⃣ Build the tokenizer once --------------------------------
# tokenizer = open_clip.get_tokenizer("MobileCLIP-B")
# # 3️⃣ Load class metadata -------------------------------------
# # Expect JSON file: [{"id": 3, "name": "cat", "prompt": "cat"}, …]
# items_path = Path(path) / "items.json"
# with items_path.open("r", encoding="utf-8") as f:
# class_defs: List[Dict[str, Any]] = json.load(f)
# # Extract the bits we need later
# prompts = [item["prompt"] for item in class_defs]
# self.class_ids: List[int] = [item["id"] for item in class_defs]
# self.class_names: List[str] = [item["name"] for item in class_defs]
# # 4️⃣ Encode all prompts once ---------------------------------
# with torch.no_grad():
# text_tokens = tokenizer(prompts).to(self.device)
# text_feats = self.model.encode_text(text_tokens)
# text_feats = text_feats / text_feats.norm(dim=-1, keepdim=True)
# self.text_features = text_feats # [num_classes, 512]
# # ------------------------------------------------------------------ #
# # INFERENCE CALL #
# # ------------------------------------------------------------------ #
# def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
# """
# Parameters
# ----------
# data : dict
# Either the raw payload `{"image": "<base64>"}` **or** the
# Hugging Face convention `{"inputs": {...}}`.
# Returns
# -------
# list of dict
# Sorted list of `{"id": int, "label": str, "score": float}`.
# Scores are the softmax probabilities over the *provided*
# class list (they sum to 1.0).
# """
# # 1️⃣ Unpack the request payload ------------------------------
# payload: Dict[str, Any] = data.get("inputs", data)
# img_b64: str = payload["image"]
# # 2️⃣ Decode + preprocess -------------------------------------
# image = Image.open(io.BytesIO(base64.b64decode(img_b64))).convert("RGB")
# img_tensor = self.preprocess(image).unsqueeze(0).to(self.device) # [1, 3, 224, 224]
# if self.device == "cuda":
# img_tensor = img_tensor.to(torch.float16)
# # 3️⃣ Forward pass (image only) -------------------------------
# with torch.no_grad(): # no autograd graph
# img_feat = self.model.encode_image(img_tensor) # [1, 512]
# img_feat = img_feat / img_feat.norm(dim=-1, keepdim=True) # L2‑normalise
# # cosine similarity → logits → softmax probabilities
# probs = (100 * img_feat @ self.text_features.T).softmax(dim=-1)[0] # [num_classes]
# # 4️⃣ Assemble JSON‑serialisable response ---------------------
# results = zip(self.class_ids, self.class_names, probs.cpu().tolist())
# return sorted(
# [{"id": cid, "label": name, "score": float(p)} for cid, name, p in results],
# key=lambda x: x["score"],
# reverse=True,
# )
|