Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import logging
|
| 3 |
+
from BanglaRAG.bangla_rag_pipeline import BanglaRAGChain
|
| 4 |
+
import warnings
|
| 5 |
+
|
| 6 |
+
warnings.filterwarnings("ignore")
|
| 7 |
+
|
| 8 |
+
# Default constants for the script
|
| 9 |
+
DEFAULT_CHAT_MODEL_ID = "hassanaliemon/bn_rag_llama3-8b"
|
| 10 |
+
DEFAULT_EMBED_MODEL_ID = "l3cube-pune/bengali-sentence-similarity-sbert"
|
| 11 |
+
DEFAULT_K = 4
|
| 12 |
+
DEFAULT_TOP_K = 2
|
| 13 |
+
DEFAULT_TOP_P = 0.6
|
| 14 |
+
DEFAULT_TEMPERATURE = 0.6
|
| 15 |
+
DEFAULT_CHUNK_SIZE = 500
|
| 16 |
+
DEFAULT_CHUNK_OVERLAP = 150
|
| 17 |
+
DEFAULT_MAX_NEW_TOKENS = 256
|
| 18 |
+
|
| 19 |
+
# Set up logging
|
| 20 |
+
logging.basicConfig(
|
| 21 |
+
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
# Initialize and load the RAG model
|
| 25 |
+
@st.cache_resource(show_spinner=False)
|
| 26 |
+
def load_model(chat_model_id, embed_model_id, text_path, k, top_k, top_p, temperature, chunk_size, chunk_overlap, hf_token, max_new_tokens, quantization):
|
| 27 |
+
rag_chain = BanglaRAGChain()
|
| 28 |
+
rag_chain.load(
|
| 29 |
+
chat_model_id=chat_model_id,
|
| 30 |
+
embed_model_id=embed_model_id,
|
| 31 |
+
text_path=text_path,
|
| 32 |
+
k=k,
|
| 33 |
+
top_k=top_k,
|
| 34 |
+
top_p=top_p,
|
| 35 |
+
temperature=temperature,
|
| 36 |
+
chunk_size=chunk_size,
|
| 37 |
+
chunk_overlap=chunk_overlap,
|
| 38 |
+
hf_token=hf_token,
|
| 39 |
+
max_new_tokens=max_new_tokens,
|
| 40 |
+
quantization=quantization,
|
| 41 |
+
)
|
| 42 |
+
return rag_chain
|
| 43 |
+
|
| 44 |
+
def main():
|
| 45 |
+
st.title("Bangla RAG Chatbot")
|
| 46 |
+
|
| 47 |
+
# Sidebar for model configuration
|
| 48 |
+
st.sidebar.header("Model Configuration")
|
| 49 |
+
|
| 50 |
+
chat_model_id = st.sidebar.text_input("Chat Model ID", DEFAULT_CHAT_MODEL_ID)
|
| 51 |
+
embed_model_id = st.sidebar.text_input("Embed Model ID", DEFAULT_EMBED_MODEL_ID)
|
| 52 |
+
k = st.sidebar.slider("Number of Documents to Retrieve (k)", 1, 10, DEFAULT_K)
|
| 53 |
+
top_k = st.sidebar.slider("Top K", 1, 10, DEFAULT_TOP_K)
|
| 54 |
+
top_p = st.sidebar.slider("Top P", 0.0, 1.0, DEFAULT_TOP_P)
|
| 55 |
+
temperature = st.sidebar.slider("Temperature", 0.0, 1.0, DEFAULT_TEMPERATURE)
|
| 56 |
+
max_new_tokens = st.sidebar.slider("Max New Tokens", 1, 512, DEFAULT_MAX_NEW_TOKENS)
|
| 57 |
+
chunk_size = st.sidebar.slider("Chunk Size", 100, 1000, DEFAULT_CHUNK_SIZE)
|
| 58 |
+
chunk_overlap = st.sidebar.slider("Chunk Overlap", 0, 500, DEFAULT_CHUNK_OVERLAP)
|
| 59 |
+
text_path = st.sidebar.text_input("Text File Path", "text.txt")
|
| 60 |
+
quantization = st.sidebar.checkbox("Enable Quantization (4-bit)", value=False)
|
| 61 |
+
show_context = st.sidebar.checkbox("Show Retrieved Context", value=False)
|
| 62 |
+
|
| 63 |
+
hf_token = st.text_input("Hugging Face API Token", type="password")
|
| 64 |
+
|
| 65 |
+
# Load the model with the above configuration
|
| 66 |
+
rag_chain = load_model(
|
| 67 |
+
chat_model_id=chat_model_id,
|
| 68 |
+
embed_model_id=embed_model_id,
|
| 69 |
+
text_path=text_path,
|
| 70 |
+
k=k,
|
| 71 |
+
top_k=top_k,
|
| 72 |
+
top_p=top_p,
|
| 73 |
+
temperature=temperature,
|
| 74 |
+
chunk_size=chunk_size,
|
| 75 |
+
chunk_overlap=chunk_overlap,
|
| 76 |
+
hf_token=hf_token,
|
| 77 |
+
max_new_tokens=max_new_tokens,
|
| 78 |
+
quantization=quantization,
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
st.write("### Enter your question:")
|
| 82 |
+
query = st.text_input("আপনার প্রশ্ন")
|
| 83 |
+
|
| 84 |
+
if st.button("Generate Answer"):
|
| 85 |
+
if query:
|
| 86 |
+
try:
|
| 87 |
+
answer, context = rag_chain.get_response(query)
|
| 88 |
+
st.write(f"**Answer:** {answer}")
|
| 89 |
+
if show_context:
|
| 90 |
+
st.write(f"**Context:** {context}")
|
| 91 |
+
except Exception as e:
|
| 92 |
+
st.error(f"Couldn't generate an answer: {e}")
|
| 93 |
+
else:
|
| 94 |
+
st.warning("Please enter a query.")
|
| 95 |
+
|
| 96 |
+
if __name__ == "__main__":
|
| 97 |
+
main()
|