Update BanglaRAG/bangla_rag_pipeline.py
Browse files- BanglaRAG/bangla_rag_pipeline.py +20 -98
BanglaRAG/bangla_rag_pipeline.py
CHANGED
|
@@ -4,7 +4,6 @@ from transformers import (
|
|
| 4 |
AutoTokenizer,
|
| 5 |
AutoModelForCausalLM,
|
| 6 |
pipeline,
|
| 7 |
-
GenerationConfig,
|
| 8 |
BitsAndBytesConfig,
|
| 9 |
)
|
| 10 |
from langchain_core.prompts import PromptTemplate
|
|
@@ -14,25 +13,12 @@ from langchain_community.vectorstores import Chroma
|
|
| 14 |
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
| 15 |
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
| 16 |
from langchain_core.output_parsers import StrOutputParser
|
| 17 |
-
from langchain_core.prompts import ChatPromptTemplate, HumanMessagePromptTemplate
|
| 18 |
-
from rich import print as rprint
|
| 19 |
-
from rich.panel import Panel
|
| 20 |
-
from tqdm import tqdm
|
| 21 |
import warnings
|
| 22 |
-
import re
|
| 23 |
|
| 24 |
warnings.filterwarnings("ignore")
|
| 25 |
|
| 26 |
class BanglaRAGChain:
|
| 27 |
-
"""
|
| 28 |
-
Bangla Retrieval-Augmented Generation (RAG) Chain for question answering.
|
| 29 |
-
This class uses a HuggingFace/local language model for text generation, a Chroma vector database for
|
| 30 |
-
document retrieval, and a custom prompt template to create a RAG chain that can generate
|
| 31 |
-
responses to user queries in Bengali.
|
| 32 |
-
"""
|
| 33 |
-
|
| 34 |
def __init__(self):
|
| 35 |
-
"""Initializes the BanglaRAGChain with default parameters."""
|
| 36 |
self._device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 37 |
self.chat_model_id = None
|
| 38 |
self.embed_model_id = None
|
|
@@ -71,22 +57,6 @@ class BanglaRAGChain:
|
|
| 71 |
chunk_overlap=150,
|
| 72 |
hf_token=None,
|
| 73 |
):
|
| 74 |
-
"""
|
| 75 |
-
Loads the required models and data for the RAG chain.
|
| 76 |
-
Args:
|
| 77 |
-
chat_model_id (str): The Hugging Face model ID for the chat model.
|
| 78 |
-
embed_model_id (str): The Hugging Face model ID for the embedding model.
|
| 79 |
-
text_path (str): Path to the text file to be indexed.
|
| 80 |
-
quantization (bool): Whether to quantize the model or not.
|
| 81 |
-
k (int): The number of documents to retrieve.
|
| 82 |
-
top_k (int): The top_k parameter for the generation configuration.
|
| 83 |
-
top_p (float): The top_p parameter for the generation configuration.
|
| 84 |
-
max_new_tokens (int): The maximum number of new tokens to generate.
|
| 85 |
-
temperature (float): The temperature parameter for the generation configuration.
|
| 86 |
-
chunk_size (int): The chunk size for text splitting.
|
| 87 |
-
chunk_overlap (int): The chunk overlap for text splitting.
|
| 88 |
-
hf_token (str): The Hugging Face token for authentication.
|
| 89 |
-
"""
|
| 90 |
self.chat_model_id = chat_model_id
|
| 91 |
self.embed_model_id = embed_model_id
|
| 92 |
self.k = k
|
|
@@ -103,26 +73,14 @@ class BanglaRAGChain:
|
|
| 103 |
if self.hf_token is not None:
|
| 104 |
os.environ["HF_TOKEN"] = str(self.hf_token)
|
| 105 |
|
| 106 |
-
rprint(Panel("[bold green]Loading chat models...", expand=False))
|
| 107 |
self._load_models()
|
| 108 |
-
|
| 109 |
-
rprint(Panel("[bold green]Creating document...", expand=False))
|
| 110 |
self._create_document()
|
| 111 |
-
|
| 112 |
-
rprint(Panel("[bold green]Updating Chroma database...", expand=False))
|
| 113 |
self._update_chroma_db()
|
| 114 |
-
|
| 115 |
-
rprint(Panel("[bold green]Initializing retriever...", expand=False))
|
| 116 |
self._get_retriever()
|
| 117 |
-
|
| 118 |
-
rprint(Panel("[bold green]Initializing LLM...", expand=False))
|
| 119 |
self._get_llm()
|
| 120 |
-
|
| 121 |
-
rprint(Panel("[bold green]Creating chain...", expand=False))
|
| 122 |
self._create_chain()
|
| 123 |
|
| 124 |
def _load_models(self):
|
| 125 |
-
"""Loads the chat model and tokenizer."""
|
| 126 |
try:
|
| 127 |
self.tokenizer = AutoTokenizer.from_pretrained(self.chat_model_id)
|
| 128 |
bnb_config = None
|
|
@@ -133,28 +91,23 @@ class BanglaRAGChain:
|
|
| 133 |
bnb_4bit_quant_type="nf4",
|
| 134 |
bnb_4bit_compute_dtype=torch.float16,
|
| 135 |
)
|
| 136 |
-
rprint(Panel("[bold green]Applying 4bit quantization...", expand=False))
|
| 137 |
self.chat_model = AutoModelForCausalLM.from_pretrained(
|
| 138 |
self.chat_model_id,
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
quantization_config=bnb_config,
|
| 142 |
device_map="auto",
|
|
|
|
| 143 |
)
|
| 144 |
-
rprint(Panel("[bold green]Applied 4bit quantization successfully", expand=False))
|
| 145 |
else:
|
| 146 |
self.chat_model = AutoModelForCausalLM.from_pretrained(
|
| 147 |
self.chat_model_id,
|
| 148 |
-
torch_dtype=torch.
|
| 149 |
-
low_cpu_mem_usage=True,
|
| 150 |
device_map="auto",
|
| 151 |
)
|
| 152 |
-
rprint(Panel("[bold green]Chat Model loaded successfully!", expand=False))
|
| 153 |
except Exception as e:
|
| 154 |
-
|
| 155 |
|
| 156 |
def _create_document(self):
|
| 157 |
-
"""Splits the input text into chunks using RecursiveCharacterTextSplitter."""
|
| 158 |
try:
|
| 159 |
with open(self.text_path, "r", encoding="utf-8") as file:
|
| 160 |
self._text_content = file.read()
|
|
@@ -163,44 +116,21 @@ class BanglaRAGChain:
|
|
| 163 |
chunk_size=self.chunk_size,
|
| 164 |
chunk_overlap=self.chunk_overlap,
|
| 165 |
)
|
| 166 |
-
self._documents =
|
| 167 |
-
tqdm(
|
| 168 |
-
character_splitter.split_text(self._text_content),
|
| 169 |
-
desc="Chunking text",
|
| 170 |
-
)
|
| 171 |
-
)
|
| 172 |
-
print(f"Number of chunks: {len(self._documents)}")
|
| 173 |
-
if False:
|
| 174 |
-
for i, chunk in enumerate(self._documents):
|
| 175 |
-
if i > 5:
|
| 176 |
-
break
|
| 177 |
-
print(f"Chunk {i}: {chunk}")
|
| 178 |
-
rprint(Panel("[bold green]Document created successfully!", expand=False))
|
| 179 |
except Exception as e:
|
| 180 |
-
|
| 181 |
|
| 182 |
def _update_chroma_db(self):
|
| 183 |
-
"""Updates the Chroma vector database with the text chunks."""
|
| 184 |
try:
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
embeddings = HuggingFaceEmbeddings(
|
| 189 |
-
model_name=self.embed_model_id, model_kwargs=model_kwargs
|
| 190 |
-
)
|
| 191 |
-
rprint(Panel(f"[bold green]Loaded embedding model successfully!", expand=False))
|
| 192 |
-
except Exception as e:
|
| 193 |
-
rprint(Panel(f"[red]embedding model loading failed: {e}", expand=False))
|
| 194 |
-
|
| 195 |
-
self._db = Chroma.from_texts(texts=self._documents, embedding=embeddings)
|
| 196 |
-
rprint(
|
| 197 |
-
Panel("[bold green]Chroma database updated successfully!", expand=False)
|
| 198 |
)
|
|
|
|
| 199 |
except Exception as e:
|
| 200 |
-
|
| 201 |
|
| 202 |
def _create_chain(self):
|
| 203 |
-
"""Creates the retrieval-augmented generation (RAG) chain."""
|
| 204 |
template = """Below is an instruction in Bengali language that describes a task, paired with an input also in Bengali language that provides further context. Write a response in Bengali that appropriately completes the request.
|
| 205 |
### Instruction:
|
| 206 |
{question}
|
|
@@ -242,22 +172,18 @@ class BanglaRAGChain:
|
|
| 242 |
).assign(answer=rag_chain_from_docs)
|
| 243 |
|
| 244 |
self._chain = rag_chain_with_source
|
| 245 |
-
rprint(Panel("[bold green]Chain created successfully!", expand=False))
|
| 246 |
except Exception as e:
|
| 247 |
-
|
| 248 |
|
| 249 |
def _get_retriever(self):
|
| 250 |
-
"""Creates a retriever for the vector database."""
|
| 251 |
try:
|
| 252 |
self._retriever = self._db.as_retriever(
|
| 253 |
search_type="similarity", search_kwargs={"k": self.k}
|
| 254 |
)
|
| 255 |
-
rprint(Panel("[bold green]Retriever created successfully!", expand=False))
|
| 256 |
except Exception as e:
|
| 257 |
-
|
| 258 |
|
| 259 |
def _get_llm(self):
|
| 260 |
-
"""Initializes the language model using the Hugging Face pipeline."""
|
| 261 |
try:
|
| 262 |
pipe = pipeline(
|
| 263 |
"text-generation",
|
|
@@ -271,26 +197,22 @@ class BanglaRAGChain:
|
|
| 271 |
top_p=self.top_p,
|
| 272 |
top_k=self.top_k,
|
| 273 |
repetition_penalty=1.2,
|
| 274 |
-
torch_dtype=torch.
|
| 275 |
)
|
| 276 |
|
| 277 |
self._llm = HuggingFacePipeline(pipeline=pipe)
|
| 278 |
-
rprint(Panel("[bold green]LLM initialized successfully!", expand=False))
|
| 279 |
except Exception as e:
|
| 280 |
-
|
| 281 |
-
self._llm = None
|
| 282 |
|
| 283 |
def __call__(self, query):
|
| 284 |
-
"""Runs the RAG chain on a user query and returns the generated answer."""
|
| 285 |
if not self._chain:
|
| 286 |
raise ValueError("The chain has not been initialized.")
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
return result["answer"], result["context"]
|
| 290 |
|
| 291 |
def _format_docs(self, docs):
|
| 292 |
-
"""Formats retrieved documents into a string format."""
|
| 293 |
context = ""
|
| 294 |
for i, doc in enumerate(docs):
|
| 295 |
context += f"\nDocument {i + 1}:\n{doc.page_content}\n\n"
|
| 296 |
-
return context
|
|
|
|
| 4 |
AutoTokenizer,
|
| 5 |
AutoModelForCausalLM,
|
| 6 |
pipeline,
|
|
|
|
| 7 |
BitsAndBytesConfig,
|
| 8 |
)
|
| 9 |
from langchain_core.prompts import PromptTemplate
|
|
|
|
| 13 |
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
| 14 |
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
| 15 |
from langchain_core.output_parsers import StrOutputParser
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
import warnings
|
|
|
|
| 17 |
|
| 18 |
warnings.filterwarnings("ignore")
|
| 19 |
|
| 20 |
class BanglaRAGChain:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
def __init__(self):
|
|
|
|
| 22 |
self._device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 23 |
self.chat_model_id = None
|
| 24 |
self.embed_model_id = None
|
|
|
|
| 57 |
chunk_overlap=150,
|
| 58 |
hf_token=None,
|
| 59 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
self.chat_model_id = chat_model_id
|
| 61 |
self.embed_model_id = embed_model_id
|
| 62 |
self.k = k
|
|
|
|
| 73 |
if self.hf_token is not None:
|
| 74 |
os.environ["HF_TOKEN"] = str(self.hf_token)
|
| 75 |
|
|
|
|
| 76 |
self._load_models()
|
|
|
|
|
|
|
| 77 |
self._create_document()
|
|
|
|
|
|
|
| 78 |
self._update_chroma_db()
|
|
|
|
|
|
|
| 79 |
self._get_retriever()
|
|
|
|
|
|
|
| 80 |
self._get_llm()
|
|
|
|
|
|
|
| 81 |
self._create_chain()
|
| 82 |
|
| 83 |
def _load_models(self):
|
|
|
|
| 84 |
try:
|
| 85 |
self.tokenizer = AutoTokenizer.from_pretrained(self.chat_model_id)
|
| 86 |
bnb_config = None
|
|
|
|
| 91 |
bnb_4bit_quant_type="nf4",
|
| 92 |
bnb_4bit_compute_dtype=torch.float16,
|
| 93 |
)
|
|
|
|
| 94 |
self.chat_model = AutoModelForCausalLM.from_pretrained(
|
| 95 |
self.chat_model_id,
|
| 96 |
+
load_in_8bit=True,
|
| 97 |
+
torch_dtype=torch.bfloat16,
|
|
|
|
| 98 |
device_map="auto",
|
| 99 |
+
quantization_config=bnb_config,
|
| 100 |
)
|
|
|
|
| 101 |
else:
|
| 102 |
self.chat_model = AutoModelForCausalLM.from_pretrained(
|
| 103 |
self.chat_model_id,
|
| 104 |
+
torch_dtype=torch.bfloat16,
|
|
|
|
| 105 |
device_map="auto",
|
| 106 |
)
|
|
|
|
| 107 |
except Exception as e:
|
| 108 |
+
raise RuntimeError(f"Error loading chat model: {e}")
|
| 109 |
|
| 110 |
def _create_document(self):
|
|
|
|
| 111 |
try:
|
| 112 |
with open(self.text_path, "r", encoding="utf-8") as file:
|
| 113 |
self._text_content = file.read()
|
|
|
|
| 116 |
chunk_size=self.chunk_size,
|
| 117 |
chunk_overlap=self.chunk_overlap,
|
| 118 |
)
|
| 119 |
+
self._documents = character_splitter.split_text(self._text_content)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
except Exception as e:
|
| 121 |
+
raise RuntimeError(f"Chunking failed: {e}")
|
| 122 |
|
| 123 |
def _update_chroma_db(self):
|
|
|
|
| 124 |
try:
|
| 125 |
+
model_kwargs = {"device": self._device}
|
| 126 |
+
embeddings = HuggingFaceEmbeddings(
|
| 127 |
+
model_name=self.embed_model_id, model_kwargs=model_kwargs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
)
|
| 129 |
+
self._db = Chroma.from_texts(texts=self._documents, embedding=embeddings)
|
| 130 |
except Exception as e:
|
| 131 |
+
raise RuntimeError(f"Vector DB initialization failed: {e}")
|
| 132 |
|
| 133 |
def _create_chain(self):
|
|
|
|
| 134 |
template = """Below is an instruction in Bengali language that describes a task, paired with an input also in Bengali language that provides further context. Write a response in Bengali that appropriately completes the request.
|
| 135 |
### Instruction:
|
| 136 |
{question}
|
|
|
|
| 172 |
).assign(answer=rag_chain_from_docs)
|
| 173 |
|
| 174 |
self._chain = rag_chain_with_source
|
|
|
|
| 175 |
except Exception as e:
|
| 176 |
+
raise RuntimeError(f"Chain creation failed: {e}")
|
| 177 |
|
| 178 |
def _get_retriever(self):
|
|
|
|
| 179 |
try:
|
| 180 |
self._retriever = self._db.as_retriever(
|
| 181 |
search_type="similarity", search_kwargs={"k": self.k}
|
| 182 |
)
|
|
|
|
| 183 |
except Exception as e:
|
| 184 |
+
raise RuntimeError(f"Retriever creation failed: {e}")
|
| 185 |
|
| 186 |
def _get_llm(self):
|
|
|
|
| 187 |
try:
|
| 188 |
pipe = pipeline(
|
| 189 |
"text-generation",
|
|
|
|
| 197 |
top_p=self.top_p,
|
| 198 |
top_k=self.top_k,
|
| 199 |
repetition_penalty=1.2,
|
| 200 |
+
torch_dtype=torch.bfloat16,
|
| 201 |
)
|
| 202 |
|
| 203 |
self._llm = HuggingFacePipeline(pipeline=pipe)
|
|
|
|
| 204 |
except Exception as e:
|
| 205 |
+
raise RuntimeError(f"LLM initialization failed: {e}")
|
| 206 |
+
self._llm = None
|
| 207 |
|
| 208 |
def __call__(self, query):
|
|
|
|
| 209 |
if not self._chain:
|
| 210 |
raise ValueError("The chain has not been initialized.")
|
| 211 |
+
result = self._chain.invoke({"question": query})
|
| 212 |
+
return result["answer"], result["context"]
|
|
|
|
| 213 |
|
| 214 |
def _format_docs(self, docs):
|
|
|
|
| 215 |
context = ""
|
| 216 |
for i, doc in enumerate(docs):
|
| 217 |
context += f"\nDocument {i + 1}:\n{doc.page_content}\n\n"
|
| 218 |
+
return context
|