Spaces:
Sleeping
Sleeping
| # app.py | |
| import os | |
| import shutil | |
| import tempfile | |
| import cv2 | |
| import numpy as np | |
| import gradio as gr | |
| from paddleocr import PaddleOCR | |
| import psutil | |
| import time | |
| #import spaces | |
| #ocr = PaddleOCR(use_angle_cls=True, lang='en') | |
| #ocr = PaddleOCR(use_angle_cls=True, lang='en', det_model_dir='models/det', rec_model_dir='models/rec') | |
| ocr = PaddleOCR(use_angle_cls=True, lang='en') | |
| def classify_background_color(avg_color, white_thresh=230, black_thresh=50, yellow_thresh=100): | |
| r, g, b = avg_color | |
| if r >= white_thresh and g >= white_thresh and b >= white_thresh: | |
| return (255, 255, 255) | |
| if r <= black_thresh and g <= black_thresh and b <= black_thresh: | |
| return (0, 0, 0) | |
| if r >= yellow_thresh and g >= yellow_thresh and b < yellow_thresh: | |
| return (255, 255, 0) | |
| return None | |
| def sample_border_color(image, box, padding=2): | |
| h, w = image.shape[:2] | |
| x_min, y_min, x_max, y_max = box | |
| x_min = max(0, x_min - padding) | |
| x_max = min(w-1, x_max + padding) | |
| y_min = max(0, y_min - padding) | |
| y_max = min(h-1, y_max + padding) | |
| top = image[y_min:y_min+padding, x_min:x_max] | |
| bottom = image[y_max-padding:y_max, x_min:x_max] | |
| left = image[y_min:y_max, x_min:x_min+padding] | |
| right = image[y_min:y_max, x_max-padding:x_max] | |
| border_pixels = np.vstack((top.reshape(-1, 3), bottom.reshape(-1, 3), | |
| left.reshape(-1, 3), right.reshape(-1, 3))) | |
| if border_pixels.size == 0: | |
| return (255, 255, 255) | |
| median_color = np.median(border_pixels, axis=0) | |
| return tuple(map(int, median_color)) | |
| def detect_text_boxes(image): | |
| results = ocr.ocr(image, cls=True) | |
| boxes = [] | |
| if results and results[0]: | |
| for line in results[0]: | |
| box, (text, confidence) = line | |
| if text.strip(): | |
| x_min = int(min(pt[0] for pt in box)) | |
| x_max = int(max(pt[0] for pt in box)) | |
| y_min = int(min(pt[1] for pt in box)) | |
| y_max = int(max(pt[1] for pt in box)) | |
| boxes.append(((x_min, y_min, x_max, y_max), text, confidence)) | |
| else: | |
| print("No text detected in the image.") | |
| return boxes | |
| def remove_text_dynamic_fill(img_path, output_path): | |
| image = cv2.imread(img_path) | |
| if image is None: | |
| return | |
| if len(image.shape) == 2: | |
| image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) | |
| elif image.shape[2] == 1: | |
| image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) | |
| else: | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| boxes = detect_text_boxes(image) | |
| for (bbox, text, confidence) in boxes: | |
| if confidence < 0.4 or not text.strip(): | |
| continue | |
| x_min, y_min, x_max, y_max = bbox | |
| height = y_max - y_min | |
| if height <= 30: | |
| padding = 2 | |
| elif height <= 60: | |
| padding = 4 | |
| else: | |
| padding = 6 | |
| x_min_p = max(0, x_min - padding) | |
| y_min_p = max(0, y_min - padding) | |
| x_max_p = min(image.shape[1]-1, x_max + padding) | |
| y_max_p = min(image.shape[0]-1, y_max + padding) | |
| sample_crop = image[y_min_p:y_max_p, x_min_p:x_max_p] | |
| avg_color = np.mean(sample_crop.reshape(-1, 3), axis=0) | |
| fill_color = classify_background_color(avg_color) | |
| if fill_color is None: | |
| fill_color = sample_border_color(image, (x_min, y_min, x_max, y_max)) | |
| cv2.rectangle(image, (x_min_p, y_min_p), (x_max_p, y_max_p), fill_color, -1) | |
| image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) | |
| cv2.imwrite(output_path, image) | |
| #@spaces.GPU | |
| def process_folder(input_files): | |
| temp_output = tempfile.mkdtemp() | |
| wait_for_cpu(); | |
| for file in input_files: | |
| filename = os.path.basename(file.name) | |
| output_path = os.path.join(temp_output, filename) | |
| remove_text_dynamic_fill(file.name, output_path) | |
| zip_path = shutil.make_archive(temp_output, 'zip', temp_output) | |
| return zip_path | |
| def wait_for_cpu(threshold=90, interval=3, timeout=30): | |
| start = time.time() | |
| while psutil.cpu_percent(interval=1) > threshold: | |
| print("High CPU usage detected, waiting...") | |
| time.sleep(interval) | |
| if time.time() - start > timeout: | |
| print("Timed out waiting for CPU to cool down.") | |
| break | |
| demo = gr.Interface( | |
| fn=process_folder, | |
| inputs=gr.File(file_types=[".jpg", ".jpeg", ".png",".JPG", ".JPEG", ".PNG"], file_count="multiple", label="Upload Comic Images"), | |
| outputs=gr.File(label="Download Cleaned Zip"), | |
| concurrency_limit=1, | |
| title="Comic Text Cleaner", | |
| description="Upload comic images and get a zip of cleaned versions (text removed). Uses PaddleOCR for detection." | |
| ) | |
| demo.launch() |