import gradio as gr import torch as torch import numpy as np import sentencepiece import spaces from diffusers import DiffusionPipeline from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast # gr.load("models/black-forest-labs/FLUX.1-dev").launch() dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" pipe = DiffusionPipeline.from_pretrained("sayakpaul/FLUX.1-merged", torch_dtype=dtype).to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 @spaces def infer(prompt, seed=42, randomize_seed=True, width=400, height=400, guidance_scale=3.5, num_inference_steps=8, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = pipe( prompt = prompt, width = width, height = height, num_inference_steps = num_inference_steps, generator = generator, guidance_scale=guidance_scale ).images[0] return image, seed gr.on( triggers=None, fn = infer, inputs = [prompt], outputs = [result, seed] ) app.launch()