Spaces:
Runtime error
Runtime error
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import cv2 # type: ignore | |
| from segment_anything import SamAutomaticMaskGenerator, sam_model_registry | |
| from segment_anything.utils.amg import ( | |
| batch_iterator, | |
| generate_crop_boxes, | |
| ) | |
| import argparse | |
| import json | |
| import os | |
| from typing import Any, Dict, List | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| import time | |
| import torch | |
| from tqdm import tqdm | |
| parser = argparse.ArgumentParser( | |
| description=( | |
| "Runs automatic mask generation on an input image or directory of images, " | |
| "and outputs masks as either PNGs or COCO-style RLEs. Requires open-cv, " | |
| "as well as pycocotools if saving in RLE format." | |
| ) | |
| ) | |
| parser.add_argument( | |
| "--input", | |
| type=str, | |
| required=True, | |
| help="Path to either a single input image or folder of images.", | |
| ) | |
| parser.add_argument( | |
| "--output", | |
| type=str, | |
| required=True, | |
| help=( | |
| "Path to the directory where masks will be output. Output will be either a folder " | |
| "of PNGs per image or a single json with COCO-style masks." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--model-type", | |
| type=str, | |
| default="default", | |
| help="The type of model to load, in ['default', 'vit_l', 'vit_b']", | |
| ) | |
| parser.add_argument( | |
| "--checkpoint", | |
| type=str, | |
| required=True, | |
| help="The path to the SAM checkpoint to use for mask generation.", | |
| ) | |
| parser.add_argument("--device", type=str, default="cuda", help="The device to run generation on.") | |
| parser.add_argument( | |
| "--convert-to-rle", | |
| action="store_true", | |
| help=( | |
| "Save masks as COCO RLEs in a single json instead of as a folder of PNGs. " | |
| "Requires pycocotools." | |
| ), | |
| ) | |
| amg_settings = parser.add_argument_group("AMG Settings") | |
| amg_settings.add_argument( | |
| "--points-per-side", | |
| type=int, | |
| default=None, | |
| help="Generate masks by sampling a grid over the image with this many points to a side.", | |
| ) | |
| amg_settings.add_argument( | |
| "--points-per-batch", | |
| type=int, | |
| default=None, | |
| help="How many input points to process simultaneously in one batch.", | |
| ) | |
| amg_settings.add_argument( | |
| "--pred-iou-thresh", | |
| type=float, | |
| default=None, | |
| help="Exclude masks with a predicted score from the model that is lower than this threshold.", | |
| ) | |
| amg_settings.add_argument( | |
| "--stability-score-thresh", | |
| type=float, | |
| default=None, | |
| help="Exclude masks with a stability score lower than this threshold.", | |
| ) | |
| amg_settings.add_argument( | |
| "--stability-score-offset", | |
| type=float, | |
| default=None, | |
| help="Larger values perturb the mask more when measuring stability score.", | |
| ) | |
| amg_settings.add_argument( | |
| "--box-nms-thresh", | |
| type=float, | |
| default=None, | |
| help="The overlap threshold for excluding a duplicate mask.", | |
| ) | |
| amg_settings.add_argument( | |
| "--crop-n-layers", | |
| type=int, | |
| default=None, | |
| help=( | |
| "If >0, mask generation is run on smaller crops of the image to generate more masks. " | |
| "The value sets how many different scales to crop at." | |
| ), | |
| ) | |
| amg_settings.add_argument( | |
| "--crop-nms-thresh", | |
| type=float, | |
| default=None, | |
| help="The overlap threshold for excluding duplicate masks across different crops.", | |
| ) | |
| amg_settings.add_argument( | |
| "--crop-overlap-ratio", | |
| type=int, | |
| default=None, | |
| help="Larger numbers mean image crops will overlap more.", | |
| ) | |
| amg_settings.add_argument( | |
| "--crop-n-points-downscale-factor", | |
| type=int, | |
| default=None, | |
| help="The number of points-per-side in each layer of crop is reduced by this factor.", | |
| ) | |
| amg_settings.add_argument( | |
| "--min-mask-region-area", | |
| type=int, | |
| default=None, | |
| help=( | |
| "Disconnected mask regions or holes with area smaller than this value " | |
| "in pixels are removed by postprocessing." | |
| ), | |
| ) | |
| # add hourglass settings | |
| amg_settings.add_argument( | |
| "--use_hourglass", | |
| action="store_true", | |
| help="Use hourglass method to expedite mask generation.", | |
| ) | |
| amg_settings.add_argument( | |
| "--hourglass_clustering_location", | |
| type=int, | |
| default=6, | |
| help="location of clustering, ranging from [0, num of layers of transformer)" | |
| ) | |
| amg_settings.add_argument( | |
| "--hourglass_num_cluster", | |
| type=int, | |
| default=100, | |
| help="num of clusters, no more than total number of features" | |
| ) | |
| amg_settings.add_argument( | |
| "--hourglass_cluster_iters", | |
| type=int, | |
| default=5, | |
| help="num of iterations in clustering" | |
| ) | |
| amg_settings.add_argument( | |
| "--hourglass_temperture", | |
| type=float, | |
| default=5e-3, | |
| help="temperture in clustering and reconstruction" | |
| ) | |
| amg_settings.add_argument( | |
| "--hourglass_cluster_window_size", | |
| type=int, | |
| default=5, | |
| help="window size in clustering" | |
| ) | |
| amg_settings.add_argument( | |
| "--hourglass_reconstruction_k", | |
| type=int, | |
| default=20, | |
| help="k in token reconstruction layer of hourglass vit" | |
| ) | |
| def write_masks_to_folder(masks: List[Dict[str, Any]], path: str) -> None: | |
| header = "id,area,bbox_x0,bbox_y0,bbox_w,bbox_h,point_input_x,point_input_y,predicted_iou,stability_score,crop_box_x0,crop_box_y0,crop_box_w,crop_box_h" # noqa | |
| metadata = [header] | |
| for i, mask_data in enumerate(masks): | |
| mask = mask_data["segmentation"] | |
| filename = f"{i}.png" | |
| cv2.imwrite(os.path.join(path, filename), mask * 255) | |
| mask_metadata = [ | |
| str(i), | |
| str(mask_data["area"]), | |
| *[str(x) for x in mask_data["bbox"]], | |
| *[str(x) for x in mask_data["point_coords"][0]], | |
| str(mask_data["predicted_iou"]), | |
| str(mask_data["stability_score"]), | |
| *[str(x) for x in mask_data["crop_box"]], | |
| ] | |
| row = ",".join(mask_metadata) | |
| metadata.append(row) | |
| metadata_path = os.path.join(path, "metadata.csv") | |
| with open(metadata_path, "w") as f: | |
| f.write("\n".join(metadata)) | |
| return | |
| def get_amg_kwargs(args): | |
| amg_kwargs = { | |
| "points_per_side": args.points_per_side, | |
| "points_per_batch": args.points_per_batch, | |
| "pred_iou_thresh": args.pred_iou_thresh, | |
| "stability_score_thresh": args.stability_score_thresh, | |
| "stability_score_offset": args.stability_score_offset, | |
| "box_nms_thresh": args.box_nms_thresh, | |
| "crop_n_layers": args.crop_n_layers, | |
| "crop_nms_thresh": args.crop_nms_thresh, | |
| "crop_overlap_ratio": args.crop_overlap_ratio, | |
| "crop_n_points_downscale_factor": args.crop_n_points_downscale_factor, | |
| "min_mask_region_area": args.min_mask_region_area, | |
| } | |
| amg_kwargs = {k: v for k, v in amg_kwargs.items() if v is not None} | |
| return amg_kwargs | |
| def get_hourglass_kwargs(args): | |
| hourglass_kwargs = { | |
| "use_hourglass": args.use_hourglass, | |
| "hourglass_clustering_location": args.hourglass_clustering_location, | |
| "hourglass_num_cluster": args.hourglass_num_cluster, | |
| "hourglass_cluster_iters": args.hourglass_cluster_iters, | |
| "hourglass_temperture": args.hourglass_temperture, | |
| "hourglass_cluster_window_size": args.hourglass_cluster_window_size, | |
| "hourglass_reconstruction_k": args.hourglass_reconstruction_k, | |
| } | |
| hourglass_kwargs = {k: v for k, v in hourglass_kwargs.items() if v is not None} | |
| return hourglass_kwargs | |
| def show_anns(anns): | |
| if len(anns) == 0: | |
| return | |
| sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True) | |
| ax = plt.gca() | |
| ax.set_autoscale_on(False) | |
| for ann in sorted_anns: | |
| m = ann['segmentation'] | |
| img = np.ones((m.shape[0], m.shape[1], 3)) | |
| color_mask = np.random.random((1, 3)).tolist()[0] | |
| for i in range(3): | |
| img[:,:,i] = color_mask[i] | |
| ax.imshow(np.dstack((img, m*0.35))) | |
| def main(args: argparse.Namespace) -> None: | |
| print("Loading model...") | |
| hourglass_kwargs = get_hourglass_kwargs(args) | |
| sam = sam_model_registry[args.model_type](checkpoint=args.checkpoint, **hourglass_kwargs) | |
| _ = sam.to(device=args.device) | |
| output_mode = "coco_rle" if args.convert_to_rle else "binary_mask" | |
| amg_kwargs = get_amg_kwargs(args) | |
| generator = SamAutomaticMaskGenerator(sam, output_mode=output_mode, **amg_kwargs) | |
| total_time = 0 | |
| warmup = 50 | |
| num_samples = 200 | |
| for i in tqdm(range(num_samples)): | |
| image = np.random.randint(0, 255, size=(1024, 1024, 3), dtype=np.uint8) | |
| start = time.perf_counter() | |
| # masks = generator.generate(image) | |
| with torch.no_grad(): | |
| # mask_data = generator._generate_masks(image) | |
| orig_size = image.shape[:2] | |
| crop_boxes, layer_idxs = generate_crop_boxes( | |
| orig_size, generator.crop_n_layers, generator.crop_overlap_ratio | |
| ) | |
| # Iterate over image crops | |
| for crop_box, crop_layer_idx in zip(crop_boxes, layer_idxs): | |
| # crop_data = generator._process_crop(image, crop_box, layer_idx, orig_size) | |
| x0, y0, x1, y1 = crop_box | |
| cropped_im = image[y0:y1, x0:x1, :] | |
| cropped_im_size = cropped_im.shape[:2] | |
| generator.predictor.set_image(cropped_im) | |
| points_scale = np.array(cropped_im_size)[None, ::-1] | |
| points_for_image = generator.point_grids[crop_layer_idx] * points_scale | |
| for (points,) in batch_iterator(generator.points_per_batch, points_for_image): | |
| # batch_data = generator._process_batch(points, cropped_im_size, crop_box, orig_size) | |
| transformed_points = generator.predictor.transform.apply_coords(points, cropped_im_size) | |
| in_points = torch.as_tensor(transformed_points, device=generator.predictor.device) | |
| in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device) | |
| masks, iou_preds, _ = generator.predictor.predict_torch( | |
| in_points[:, None, :], | |
| in_labels[:, None], | |
| multimask_output=True, | |
| return_logits=True, | |
| ) | |
| del masks | |
| del iou_preds | |
| eta = time.perf_counter() - start | |
| if i >= warmup: | |
| total_time += eta | |
| print("Done!") | |
| print(f"Average time per image: {total_time / (num_samples - warmup)} seconds") | |
| if __name__ == "__main__": | |
| args = parser.parse_args() | |
| main(args) | |