Upload 2 files
Browse files- Dockerfile (2) +56 -0
- app (3).py +108 -0
Dockerfile (2)
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
ARG CUDA_IMAGE="12.1.1-devel-ubuntu22.04"
|
| 2 |
+
FROM nvidia/cuda:${CUDA_IMAGE}
|
| 3 |
+
|
| 4 |
+
# We need to set the host to 0.0.0.0 to allow outside access
|
| 5 |
+
ENV HOST 0.0.0.0
|
| 6 |
+
|
| 7 |
+
RUN apt-get update && apt-get upgrade -y \
|
| 8 |
+
&& apt-get install -y git build-essential \
|
| 9 |
+
python3 python3-pip gcc wget \
|
| 10 |
+
ocl-icd-opencl-dev opencl-headers clinfo \
|
| 11 |
+
libclblast-dev libopenblas-dev \
|
| 12 |
+
&& mkdir -p /etc/OpenCL/vendors && echo "libnvidia-opencl.so.1" > /etc/OpenCL/vendors/nvidia.icd
|
| 13 |
+
|
| 14 |
+
COPY . .
|
| 15 |
+
|
| 16 |
+
# setting build related env
|
| 17 |
+
# ENV CUDA_DOCKER_ARCH=all
|
| 18 |
+
# ENV LLAMA_CUBLAS=1
|
| 19 |
+
|
| 20 |
+
RUN nvcc --version && python3 --version
|
| 21 |
+
|
| 22 |
+
# Install depencencies
|
| 23 |
+
RUN python3 -m pip install --upgrade pip pytest cmake \
|
| 24 |
+
scikit-build setuptools fastapi uvicorn sse-starlette \
|
| 25 |
+
pydantic-settings starlette-context gradio huggingface_hub hf_transfer
|
| 26 |
+
|
| 27 |
+
# Install llama-cpp-python (build with cuda)
|
| 28 |
+
# RUN CMAKE_ARGS="-DGGML_CUDA=on -DCMAKE_CUDA_ARCHITECTURES=75" FORCE_CMAKE=1 python3 -m pip install llama-cpp-python --force-reinstall --upgrade --no-cache-dir --verbose
|
| 29 |
+
# RUN python3 -m pip install llama-cpp-python
|
| 30 |
+
#RUN python3 -m pip install llama-cpp-python \
|
| 31 |
+
# --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu121
|
| 32 |
+
|
| 33 |
+
RUN pip install https://github.com/abetlen/llama-cpp-python/releases/download/v0.3.4-cu121/llama_cpp_python-0.3.4-cp310-cp310-linux_x86_64.whl
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
RUN useradd -m -u 1000 user
|
| 38 |
+
# Switch to the "user" user
|
| 39 |
+
USER user
|
| 40 |
+
# Set home to the user's home directory
|
| 41 |
+
ENV HOME=/home/user \
|
| 42 |
+
PATH=/home/user/.local/bin:$PATH \
|
| 43 |
+
PYTHONPATH=$HOME/app \
|
| 44 |
+
PYTHONUNBUFFERED=1 \
|
| 45 |
+
GRADIO_ALLOW_FLAGGING=never \
|
| 46 |
+
GRADIO_NUM_PORTS=1 \
|
| 47 |
+
GRADIO_SERVER_NAME=0.0.0.0 \
|
| 48 |
+
GRADIO_THEME=huggingface \
|
| 49 |
+
SYSTEM=spaces
|
| 50 |
+
|
| 51 |
+
WORKDIR $HOME/app
|
| 52 |
+
|
| 53 |
+
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
| 54 |
+
COPY --chown=user . $HOME/app
|
| 55 |
+
|
| 56 |
+
CMD ["python3", "app.py"]
|
app (3).py
ADDED
|
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import subprocess
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from threading import Thread
|
| 6 |
+
from huggingface_hub import hf_hub_download
|
| 7 |
+
from llama_cpp import Llama
|
| 8 |
+
from datetime import datetime
|
| 9 |
+
|
| 10 |
+
# Load model from Hugging Face Hub
|
| 11 |
+
MODEL_ID = "large-traversaal/Alif-1.0-8B-Instruct"
|
| 12 |
+
MODEL_FILE = "model-Q8_0.gguf"
|
| 13 |
+
|
| 14 |
+
model_path_file = hf_hub_download(MODEL_ID, filename=MODEL_FILE)
|
| 15 |
+
|
| 16 |
+
# Initialize Llama model
|
| 17 |
+
llama = Llama(
|
| 18 |
+
model_path=model_path_file,
|
| 19 |
+
n_gpu_layers=40, # Adjust based on VRAM
|
| 20 |
+
n_threads=8, # Match CPU cores
|
| 21 |
+
n_batch=512, # Optimize for better VRAM usage
|
| 22 |
+
n_ctx=4096, # Context window size
|
| 23 |
+
verbose=True # Enable debug logging
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# Function to generate responses
|
| 28 |
+
def generate_response(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
|
| 29 |
+
# chat_prompt = f"You are an Urdu Chatbot. Write an appropriate response for the given instruction: {message} Response:"
|
| 30 |
+
chat_prompt = f"{system_prompt}\n ### Instruction: {message}\n ### Response:"
|
| 31 |
+
response = llama(chat_prompt, temperature=temperature, max_tokens=max_new_tokens, top_k=top_k, repeat_penalty=repetition_penalty, top_p=top_p, stop=["Q:", "\n"], echo=False, stream=True)
|
| 32 |
+
|
| 33 |
+
text = ""
|
| 34 |
+
for chunk in response:
|
| 35 |
+
content = chunk["choices"][0]["text"]
|
| 36 |
+
if content:
|
| 37 |
+
text += content
|
| 38 |
+
yield text
|
| 39 |
+
|
| 40 |
+
# def generate_response(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
|
| 41 |
+
# """Generates a streaming response from the Llama model."""
|
| 42 |
+
# messages = [
|
| 43 |
+
# {"role": "system", "content": "You are an Urdu Chatbot. Write an appropriate response for the given instruction."},
|
| 44 |
+
# ]
|
| 45 |
+
|
| 46 |
+
# # Add history and the current message
|
| 47 |
+
# #for user, bot in history:
|
| 48 |
+
# #messages.append({"role": "user", "content": user})
|
| 49 |
+
# #messages.append({"role": "assistant", "content": bot})
|
| 50 |
+
|
| 51 |
+
# messages.append({"role": "user", "content": message})
|
| 52 |
+
|
| 53 |
+
# response = llama.create_chat_completion(
|
| 54 |
+
# messages=messages,
|
| 55 |
+
# stream=True,
|
| 56 |
+
# )
|
| 57 |
+
|
| 58 |
+
# partial_message = ""
|
| 59 |
+
# for part in response:
|
| 60 |
+
# content = part["choices"][0]["delta"].get("content", "")
|
| 61 |
+
# partial_message += content
|
| 62 |
+
# yield partial_message
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
# JavaScript function for `on_load`
|
| 66 |
+
on_load = """
|
| 67 |
+
async()=>{ alert("Welcome to the Traversaal Alif 1.0 Chatbot! This is an experimental AI model. Please use responsibly."); }
|
| 68 |
+
"""
|
| 69 |
+
|
| 70 |
+
placeholder = """
|
| 71 |
+
<center><h1>10 Questions</h1><br>Think of a person, place, or thing. I'll ask you 10 yes/no questions to try and guess it.
|
| 72 |
+
</center>
|
| 73 |
+
"""
|
| 74 |
+
|
| 75 |
+
# Create custom chat UI using `gr.Blocks`
|
| 76 |
+
with gr.Blocks(js=on_load, theme=gr.themes.Default()) as demo:
|
| 77 |
+
with gr.Column(scale=1, elem_id="center-content"):
|
| 78 |
+
gr.Markdown(
|
| 79 |
+
"""
|
| 80 |
+
<div style="text-align: center;">
|
| 81 |
+
<h1>Alif 1.0 Urdu & English Chatbot 🚀</h1>
|
| 82 |
+
<p>Alif 1.0 8B Instruct is an open-source model with highly advanced multilingual reasoning capabilities. It utilizes human refined multilingual synthetic data paired with reasoning to enhance cultural nuance and reasoning capabilities in english and urdu languages.</p>
|
| 83 |
+
</div>
|
| 84 |
+
""",
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
chat = gr.ChatInterface(
|
| 88 |
+
generate_response,
|
| 89 |
+
#chatbot=gr.Chatbot(placeholder=placeholder),
|
| 90 |
+
#title="🚀" + " " + "Alif-1.0 Chatbot",
|
| 91 |
+
#description="Urdu AI Chatbot powered by Llama.cpp",
|
| 92 |
+
examples=[
|
| 93 |
+
["شہر کراچی کے بارے میں بتاؤ"],
|
| 94 |
+
["قابل تجدید توانائی کیا ہے؟"],
|
| 95 |
+
["پاکستان کے بارے میں بتائیں"]
|
| 96 |
+
],
|
| 97 |
+
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
|
| 98 |
+
additional_inputs=[
|
| 99 |
+
gr.Textbox(value="You are an Urdu Chatbot. Write an appropriate response for the given instruction in Urdu.", label="System prompt", render=False),
|
| 100 |
+
gr.Slider(0, 1, 0.8, label="Temperature", render=False),
|
| 101 |
+
gr.Slider(128, 4096, 512, label="Max new tokens", render=False),
|
| 102 |
+
gr.Slider(1, 80, 40, step=1, label="Top K sampling", render=False),
|
| 103 |
+
gr.Slider(0, 2, 1.1, label="Repetition penalty", render=False),
|
| 104 |
+
gr.Slider(0, 1, 0.95, label="Top P sampling", render=False),
|
| 105 |
+
],
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
demo.queue(max_size=10).launch(share=True)
|