# Based on https://github.com/openai/whisper/blob/main/whisper/model.py from dataclasses import dataclass from functools import lru_cache import os from typing import Iterable, Optional, Union import numpy as np import torch import torch.nn.functional as F from torch import Tensor from torch import nn def exact_div(x, y): assert x % y == 0 return x // y # hard-coded audio hyperparameters SAMPLE_RATE = 16000 N_FFT = 400 N_MELS = 80 HOP_LENGTH = 160 CHUNK_LENGTH = 30 N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000: number of samples in a chunk N_FRAMES = exact_div( N_SAMPLES, HOP_LENGTH ) # 3000: number of frames in a mel spectrogram input def pad_or_trim( array: Union[torch.Tensor, np.ndarray], length: int = N_SAMPLES, *, axis: int = -1, ) -> torch.Tensor: """ Pad or trim the audio array to N_SAMPLES, as expected by the encoder. """ if not torch.is_tensor(array): array = torch.from_numpy(array) if array.shape[axis] > length: array = array.index_select( dim=axis, index=torch.arange(length, device=array.device) ) if array.shape[axis] < length: # pad multiple times num_repeats = int(length / array.shape[axis]) + 1 array = torch.tile(array, (1, num_repeats))[:, :length] return array @lru_cache(maxsize=None) def mel_filters(device, n_mels: int = N_MELS) -> torch.Tensor: """ load the mel filterbank matrix for projecting STFT into a Mel spectrogram. Allows decoupling librosa dependency; saved using: np.savez_compressed( "mel_filters.npz", mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80), ) """ assert n_mels == 80, f"Unsupported n_mels: {n_mels}" with np.load( os.path.join(os.path.dirname(__file__), "assets/mel_filters.npz") ) as f: return torch.from_numpy(f[f"mel_{n_mels}"]).to(device) def log_mel_spectrogram(audio: torch.Tensor, n_mels: int = N_MELS): """ Compute the log-Mel spectrogram of Parameters ---------- audio: Union[str, np.ndarray, torch.Tensor], shape = (*) The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz n_mels: int The number of Mel-frequency filters, only 80 is supported Returns ------- torch.Tensor, shape = (80, n_frames) A Tensor that contains the Mel spectrogram """ window = torch.hann_window(N_FFT).to(audio.device) stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True) magnitudes = stft[:, :-1].abs() ** 2 filters = mel_filters(audio.device, n_mels) mel_spec = filters @ magnitudes log_spec = torch.clamp(mel_spec, min=1e-10).log10() log_spec = torch.maximum(log_spec, log_spec.max() - 8.0) log_spec = (log_spec + 4.0) / 4.0 return log_spec @dataclass class ModelDimensions: n_mels: int n_audio_ctx: int n_audio_state: int n_audio_head: int n_audio_layer: int n_vocab: int n_text_ctx: int n_text_state: int n_text_head: int n_text_layer: int class LayerNorm(nn.LayerNorm): def forward(self, x: Tensor) -> Tensor: return super().forward(x.float()).type(x.dtype) class Linear(nn.Linear): def forward(self, x: Tensor) -> Tensor: return F.linear( x, self.weight.to(x.dtype), None if self.bias is None else self.bias.to(x.dtype), ) class Conv1d(nn.Conv1d): def _conv_forward( self, x: Tensor, weight: Tensor, bias: Optional[Tensor] ) -> Tensor: return super()._conv_forward( x, weight.to(x.dtype), None if bias is None else bias.to(x.dtype) ) def sinusoids(length, channels, max_timescale=10_000): """Returns sinusoids for positional embedding""" assert channels % 2 == 0 log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1) inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2)) scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :] return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1) class MultiHeadAttention(nn.Module): def __init__(self, n_state: int, n_head: int): super().__init__() self.n_head = n_head self.query = Linear(n_state, n_state) self.key = Linear(n_state, n_state, bias=False) self.value = Linear(n_state, n_state) self.out = Linear(n_state, n_state) def forward( self, x: Tensor, xa: Optional[Tensor] = None, mask: Optional[Tensor] = None, kv_cache: Optional[dict] = None, ): q = self.query(x) if kv_cache is None or xa is None or self.key not in kv_cache: # hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors; # otherwise, perform key/value projections for self- or cross-attention as usual. k = self.key(x if xa is None else xa) v = self.value(x if xa is None else xa) else: # for cross-attention, calculate keys and values once and reuse in subsequent calls. k = kv_cache[self.key] v = kv_cache[self.value] wv = self.qkv_attention(q, k, v, mask) return self.out(wv) def qkv_attention( self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None ): n_batch, n_ctx, n_state = q.shape scale = (n_state // self.n_head) ** -0.25 q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) * scale k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 3, 1) * scale v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) qk = q @ k if mask is not None: qk = qk + mask[:n_ctx, :n_ctx] w = F.softmax(qk.float(), dim=-1).to(q.dtype) return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2) class ResidualAttentionBlock(nn.Module): def __init__(self, n_state: int, n_head: int, cross_attention: bool = False): super().__init__() self.attn = MultiHeadAttention(n_state, n_head) self.attn_ln = LayerNorm(n_state) self.cross_attn = ( MultiHeadAttention(n_state, n_head) if cross_attention else None ) self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None n_mlp = n_state * 4 self.mlp = nn.Sequential( Linear(n_state, n_mlp), nn.GELU(), Linear(n_mlp, n_state) ) self.mlp_ln = LayerNorm(n_state) def forward( self, x: Tensor, xa: Optional[Tensor] = None, mask: Optional[Tensor] = None, kv_cache: Optional[dict] = None, ): x = x + self.attn(self.attn_ln(x), mask=mask, kv_cache=kv_cache) if self.cross_attn: x = x + self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache) x = x + self.mlp(self.mlp_ln(x)) return x class AudioEncoder(nn.Module): def __init__( self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int ): super().__init__() self.conv1 = Conv1d(n_mels, n_state, kernel_size=3, padding=1) self.conv2 = Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1) self.register_buffer("positional_embedding", sinusoids(n_ctx, n_state)) self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList( [ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)] ) self.ln_post = LayerNorm(n_state) def forward(self, x: Tensor): """ x : torch.Tensor, shape = (batch_size, n_mels, n_ctx) the mel spectrogram of the audio """ x = F.gelu(self.conv1(x)) x = F.gelu(self.conv2(x)) x = x.permute(0, 2, 1) assert x.shape[1:] == self.positional_embedding.shape, "incorrect audio shape" x = (x + self.positional_embedding).to(x.dtype) for block in self.blocks: x = block(x) x = self.ln_post(x) return x class TextDecoder(nn.Module): def __init__( self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int ): super().__init__() self.token_embedding = nn.Embedding(n_vocab, n_state) self.positional_embedding = nn.Parameter(torch.empty(n_ctx, n_state)) self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList( [ ResidualAttentionBlock(n_state, n_head, cross_attention=True) for _ in range(n_layer) ] ) self.ln = LayerNorm(n_state) mask = torch.empty(n_ctx, n_ctx).fill_(-np.inf).triu_(1) self.register_buffer("mask", mask, persistent=False) def forward(self, x: Tensor, xa: Tensor, kv_cache: Optional[dict] = None): """ x : torch.LongTensor, shape = (batch_size, <= n_ctx) the text tokens xa : torch.Tensor, shape = (batch_size, n_mels, n_audio_ctx) the encoded audio features to be attended on """ offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0 x = ( self.token_embedding(x) + self.positional_embedding[offset : offset + x.shape[-1]] ) x = x.to(xa.dtype) for block in self.blocks: x = block(x, xa, mask=self.mask, kv_cache=kv_cache) x = self.ln(x) logits = ( x @ torch.transpose(self.token_embedding.weight.to(x.dtype), 0, 1) ).float() return logits class Whisper(nn.Module): def __init__(self, dims: ModelDimensions): super().__init__() self.dims = dims self.encoder = AudioEncoder( self.dims.n_mels, self.dims.n_audio_ctx, self.dims.n_audio_state, self.dims.n_audio_head, self.dims.n_audio_layer, ) def forward(self, mel: torch.Tensor): return self.encoder(mel) @property def device(self): return next(self.parameters()).device