File size: 16,060 Bytes
81d41bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
# -*- coding: utf-8 -*-
"""
Gradio app.py - wired to your 'inference_one' implementation
- Reference voice: upload OR choose from train_ref/
- Uses phonemize_text(), compute_style(), inference_one() exactly like your snippet
- NOW: adds UI sliders for alpha and beta and threads them into inference
"""

import os
import time
import yaml
import numpy as np
import torch
import torchaudio
import librosa
import gradio as gr

from munch import Munch

# -----------------------------
# Reproducibility
# -----------------------------
torch.manual_seed(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
np.random.seed(0)

# -----------------------------
# Device / sample-rate
# -----------------------------
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
SR_OUT = 24000  # target audio rate for synthesis

# -----------------------------
# External modules from the project
# -----------------------------
from models import *             # noqa: F401,F403
from utils import *              # noqa: F401,F403
from models import build_model
from text_utils import TextCleaner
from Utils_extend_v1.PLBERT.util import load_plbert
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule

textcleaner = TextCleaner()

# -----------------------------
# Config / model loading
# -----------------------------
from huggingface_hub import hf_hub_download
hf_hub_download(
    repo_id="ltphuongunited/styletts2_vi", 
    filename="epoch_2nd_00058.pth", 
    local_dir="Models/multi_phoaudio_gemini", 
    local_dir_use_symlinks=False,
)

# CONFIG_PATH = os.getenv("MODEL_CONFIG", "Models/multi_phoaudio_gemini/config_phoaudio_gemini_small.yml")
# CHECKPOINT_PTH = os.getenv("MODEL_CKPT", "Models/multi_phoaudio_gemini/epoch_2nd_00058.pth")

CHECKPOINT_PTH = "Models/gemini_vi/gemini_2nd_00045.pth"
CONFIG_PATH = "Models/gemini_vi/config_gemini_vi_en.yml"

# Load config
config = yaml.safe_load(open(CONFIG_PATH))

# Build components
ASR_config = config.get("ASR_config", False)
ASR_path   = config.get("ASR_path", False)
F0_path    = config.get("F0_path", False)
PLBERT_dir = config.get("PLBERT_dir", False)

text_aligner    = load_ASR_models(ASR_path, ASR_config)
pitch_extractor = load_F0_models(F0_path)
plbert          = load_plbert(PLBERT_dir)

model_params = recursive_munch(config["model_params"])
model = build_model(model_params, text_aligner, pitch_extractor, plbert)

# to device & eval
_ = [model[k].to(DEVICE) for k in model]
_ = [model[k].eval() for k in model]

# Load checkpoint
if not os.path.isfile(CHECKPOINT_PTH):
    raise FileNotFoundError(f"Checkpoint not found at '{CHECKPOINT_PTH}'")
ckpt = torch.load(CHECKPOINT_PTH, map_location="cpu")
params = ckpt["net"]
for key in model:
    if key in params:
        try:
            model[key].load_state_dict(params[key])
        except Exception:
            from collections import OrderedDict
            state_dict = params[key]
            new_state = OrderedDict()
            for k, v in state_dict.items():
                name = k[7:]  # strip 'module.' if present
                new_state[name] = v
            model[key].load_state_dict(new_state, strict=False)
_ = [model[k].eval() for k in model]

# Diffusion sampler
sampler = DiffusionSampler(
    model.diffusion.diffusion,
    sampler=ADPM2Sampler(),
    sigma_schedule=KarrasSchedule(sigma_min=1e-4, sigma_max=3.0, rho=9.0),
    clamp=False,
)

# -----------------------------
# Audio helper: mel preprocessing
# -----------------------------
_to_mel = torchaudio.transforms.MelSpectrogram(
    n_mels=80, n_fft=2048, win_length=1200, hop_length=300
)
_MEAN, _STD = -4.0, 4.0

def length_to_mask(lengths: torch.LongTensor) -> torch.Tensor:
    mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
    mask = torch.gt(mask + 1, lengths.unsqueeze(1))
    return mask

def preprocess(wave: np.ndarray) -> torch.Tensor:
    """Same name as your snippet: np.float -> mel (normed)"""
    wave_tensor = torch.from_numpy(wave).float()
    mel_tensor = _to_mel(wave_tensor)
    mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - _MEAN) / _STD
    return mel_tensor

# -----------------------------
# Phonemizer (vi)
# -----------------------------
import phonemizer
vi_phonemizer = phonemizer.backend.EspeakBackend(language="vi", preserve_punctuation=True, with_stress=True)
global_phonemizer = vi_phonemizer

def phonemize_text(text: str) -> str:
    ps = global_phonemizer.phonemize([text])[0]
    return ps.replace("(en)", "").replace("(vi)", "").strip()

# -----------------------------
# Style extractor (from file path)
# -----------------------------

def compute_style(model, path, device):
    """Compute style/prosody reference from a wav file path"""
    wave, sr = librosa.load(path, sr=None, mono=True)
    audio, _ = librosa.effects.trim(wave, top_db=30)
    if sr != SR_OUT:
        audio = librosa.resample(audio, sr, SR_OUT)
    mel_tensor = preprocess(audio).to(device)

    with torch.no_grad():
        ref_s = model.style_encoder(mel_tensor.unsqueeze(1))
        ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1))
    return torch.cat([ref_s, ref_p], dim=1)   # [1, 256]

# Style extractor (from numpy array)

def compute_style_from_numpy(model, arr: np.ndarray, sr: int, device):
    if arr.ndim > 1:
        arr = librosa.to_mono(arr.T)
    audio, _ = librosa.effects.trim(arr, top_db=30)
    if sr != SR_OUT:
        audio = librosa.resample(audio, sr, SR_OUT)
    mel_tensor = preprocess(audio).to(device)
    with torch.no_grad():
        ref_s = model.style_encoder(mel_tensor.unsqueeze(1))
        ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1))
    return torch.cat([ref_s, ref_p], dim=1)

# -----------------------------
# Inference (your exact logic)
# -----------------------------
# Tunables (still as defaults; UI will override)
ALPHA = 0.3
BETA  = 0.7
DIFFUSION_STEPS = 5
EMBEDDING_SCALE = 1.0

def inference_one(text, ref_feat, ipa_text=None,
                  alpha=ALPHA, beta=BETA, diffusion_steps=DIFFUSION_STEPS, embedding_scale=EMBEDDING_SCALE):
    # text -> phonemes -> tokens
    ps = ipa_text if ipa_text is not None else phonemize_text(text)
    tokens = textcleaner(ps)
    tokens.insert(0, 0)  # prepend BOS
    tokens = torch.LongTensor(tokens).to(DEVICE).unsqueeze(0)  # [1, T]

    with torch.no_grad():
        input_lengths = torch.LongTensor([tokens.shape[-1]]).to(DEVICE)
        text_mask = length_to_mask(input_lengths).to(DEVICE)

        # encoders
        t_en   = model.text_encoder(tokens, input_lengths, text_mask)
        bert_d = model.bert(tokens, attention_mask=(~text_mask).int())
        d_en   = model.bert_encoder(bert_d).transpose(-1, -2)


        if alpha == 0 and beta == 0:
            print("Ignore Diffusion")
            ref = ref_feat[:, :128]
            s = ref_feat[:, 128:]
            simi_timbre, simi_prosody = 1,1
        else:
            print("Have Diffusion")
            # diffusion for style latent
            s_pred = sampler(
                noise=torch.randn((1, 256)).unsqueeze(1).to(DEVICE),
                embedding=bert_d,
                embedding_scale=embedding_scale,
                features=ref_feat,   # [1, 256]
                num_steps=diffusion_steps,
            ).squeeze(1)  # [1, 256]

            s   = s_pred[:, 128:]    # prosody
            ref = s_pred[:, :128]    # timbre

            # blend with real ref features
            ref = alpha * ref + (1 - alpha) * ref_feat[:, :128]
            s   = beta  * s   + (1 - beta)  * ref_feat[:, 128:]

            with torch.no_grad():
                ref0 = ref_feat[:, :128]   # timbre gốc
                s0   = ref_feat[:, 128:]   # prosody gốc

                eps = 1e-8

                def stats(name, new, base):
                    delta = new - base
                    l2_delta   = torch.norm(delta, dim=1)                          # ||Δ||
                    l2_base    = torch.norm(base, dim=1) + eps                     # ||x||
                    rel_l2     = (l2_delta / l2_base)                              # ||Δ|| / ||x||
                    mae        = torch.mean(torch.abs(delta), dim=1)               # MAE
                    cos_sim    = F.cosine_similarity(new, base, dim=1)             # cos(new, base)
                    snr_db     = 20.0 * torch.log10(l2_base / (l2_delta + eps))    # SNR ~ 20*log10(||x||/||Δ||)
                    # # Inference batch thường =1, nhưng vẫn in theo batch để tổng quát
                    # for i in range(new.shape[0]):
                    #     print(f"[{name}][sample {i}] "
                    #         f"L2Δ={l2_delta[i]:.4f} | relL2={rel_l2[i]:.4f} | MAE={mae[i]:.6f} | "
                    #         f"cos={cos_sim[i]:.4f} | SNR={snr_db[i]:.2f} dB")

                    return cos_sim


                simi_timbre = stats("REF(timbre)", s_pred[:, :128], ref_feat[:, :128]).detach().cpu().squeeze().item()
                simi_prosody   = stats("S(prosody)",  s_pred[:, 128:],  ref_feat[:, 128:]).detach().cpu().squeeze().item()

        # duration prediction
        d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)
        x, _ = model.predictor.lstm(d)
        duration = torch.sigmoid(model.predictor.duration_proj(x)).sum(axis=-1)
        pred_dur = torch.round(duration.squeeze()).clamp(min=1)

        # alignment
        T = int(pred_dur.sum().item())
        pred_aln = torch.zeros(input_lengths.item(), T, device=DEVICE)
        c = 0
        for i in range(input_lengths.item()):
            span = int(pred_dur[i].item())
            pred_aln[i, c:c+span] = 1.0
            c += span

        # prosody enc
        en = (d.transpose(-1, -2) @ pred_aln.unsqueeze(0))
        if model_params.decoder.type == "hifigan":
            asr_new = torch.zeros_like(en); asr_new[:, :, 0] = en[:, :, 0]; asr_new[:, :, 1:] = en[:, :, 0:-1]; en = asr_new

        F0_pred, N_pred = model.predictor.F0Ntrain(en, s)

        # content (ASR-aligned)
        asr = (t_en @ pred_aln.unsqueeze(0))
        if model_params.decoder.type == "hifigan":
            asr_new = torch.zeros_like(asr); asr_new[:, :, 0] = asr[:, :, 0]; asr_new[:, :, 1:] = asr[:, :, 0:-1]; asr = asr_new

        # decode
        out = model.decoder(asr, F0_pred, N_pred, ref.squeeze().unsqueeze(0))

    wav = out.squeeze().detach().cpu().numpy()
    if wav.shape[-1] > 50:
        wav = wav[..., :-50]
    return wav, ps, simi_timbre, simi_prosody

# -----------------------------
# Gradio UI
# -----------------------------

SR_OUT = 24000
ROOT_REF = "ref_voice"
EXTS = {".wav", ".mp3", ".flac", ".ogg", ".m4a"}

# -------- scan ref_voice/<id>_<speaker>/*.wav --------

def scan_ref_voice(root=ROOT_REF):
    """
    return:
      speakers: list[str]                # ví dụ: ["0_Fonos.vn", "1_James_A._Robinson", ...]
      files_by_spk: dict[str, list[str]] # speaker_dir -> [full_path,...]
    """
    speakers, files_by_spk = [], {}
    if not os.path.isdir(root):
        return speakers, files_by_spk

    for spk_dir in sorted(os.listdir(root)):
        full_dir = os.path.join(root, spk_dir)
        if not os.path.isdir(full_dir) or spk_dir.startswith("."):
            continue
        lst = []
        for fn in sorted(os.listdir(full_dir)):
            if os.path.splitext(fn)[1].lower() in EXTS:
                lst.append(os.path.join(full_dir, fn))
        if lst:
            speakers.append(spk_dir)
            files_by_spk[spk_dir] = lst
    return speakers, files_by_spk

SPEAKERS, FILES_BY_SPK = scan_ref_voice()

with gr.Blocks(title="StyleTTS2-vi Demo ✨") as demo:
    gr.Markdown("# StyleTTS2-vi Demo ✨")

    with gr.Row():
        with gr.Column():
            text_inp = gr.Textbox(label="Text", lines=4,
                                  value="Thời tiết hôm nay tại Hà Nội, nhiệt độ khoảng 27 độ C, có nắng nhẹ, rất hợp lý để mình đi dạo công viên nhé.")

            # --- 1 ô audio duy nhất (nhận filepath) ---
            ref_audio = gr.Audio(
                label="Reference Audio",
                type="filepath",                 # nhận đường dẫn file
                sources=["upload","microphone"], # vẫn cho upload/mic
                interactive=True,
            )
            ref_path  = gr.Textbox(label="Đường dẫn reference", interactive=False)

            # --- chọn speaker -> hiện file tương ứng ---
            spk_dd = gr.Dropdown(
                label="Speaker",
                choices=["(None)"] + SPEAKERS,
                value="(None)",
            )
            file_dd = gr.Dropdown(
                label="Voice in speaker",
                choices=["(None)"],
                value="(None)",
            )

            # khi chọn speaker -> cập nhật danh sách file
            def on_pick_speaker(spk):
                if spk == "(None)":
                    return gr.update(choices=["(None)"], value="(None)")
                files = FILES_BY_SPK.get(spk, [])
                # hiển thị chỉ tên file cho gọn
                labels = [os.path.basename(p) for p in files]
                # ta sẽ map label->path bằng index; set value = mục đầu tiên
                return gr.update(choices=labels, value=(labels[0] if labels else "(None)"))

            spk_dd.change(on_pick_speaker, inputs=spk_dd, outputs=file_dd)

            # map label (basename) -> full path theo speaker hiện tại
            def on_pick_file(spk, label):
                if spk == "(None)" or label == "(None)":
                    return gr.update(value=None), ""
                files = FILES_BY_SPK.get(spk, [])
                # tìm đúng file theo basename
                for p in files:
                    if os.path.basename(p) == label:
                        return gr.update(value=p), p  # set vào Audio + hiển thị path
                return gr.update(value=None), ""

            file_dd.change(on_pick_file, inputs=[spk_dd, file_dd], outputs=[ref_audio, ref_path])

            # nếu người dùng upload/mic thì hiển thị luôn đường dẫn file tạm
            def on_audio_changed(fp):
                return fp or ""
            ref_audio.change(on_audio_changed, inputs=ref_audio, outputs=ref_path)

            # --- NEW: alpha/beta numeric inputs ---
            with gr.Row():
                alpha_n = gr.Number(value=ALPHA, label="alpha (0-1, timbre)", precision=3)
                beta_n  = gr.Number(value=BETA,  label="beta (0-1, prosody)", precision=3)

            btn = gr.Button("Đọc 🔊🔥", variant="primary")

        with gr.Column():
            out_audio = gr.Audio(label="Synthesised Audio", type="numpy")
            metrics   = gr.JSON(label="Metrics")

    # ---- Inference: xử lý từ filepath ----
    def _run(text, ref_fp, alpha, beta):
        # ref_fp là string path (do type='filepath')
        if isinstance(ref_fp, str) and os.path.isfile(ref_fp):
            wav, _ = librosa.load(ref_fp, sr=SR_OUT, mono=True)
            ref_feat = compute_style_from_numpy(model, wav, SR_OUT, DEVICE)
            ref_src = ref_fp
        else:
            ref_feat = torch.zeros(1, 256).to(DEVICE)
            ref_src = "(None)"

        t0 = time.time()
        wav, ps, simi_timbre, simi_prosody = inference_one(text, ref_feat, alpha=float(alpha), beta=float(beta))
        wav = wav.astype(np.float32)
        gen_time = time.time() - t0
        rtf = gen_time / max(1e-6, len(wav)/SR_OUT)

        info = {
            "simi_timbre": round(float(simi_timbre), 4) ,
            "simi_prosody": round(float(simi_prosody), 4) ,
            "Phonemes": ps,
            "Sample rate": SR_OUT,
            "RTF": round(float(rtf), 3),
            "Device": DEVICE,
        }
        return (SR_OUT, wav), info

    btn.click(_run, inputs=[text_inp, ref_audio, alpha_n, beta_n], outputs=[out_audio, metrics])


if __name__ == "__main__":
    demo.launch()