Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- Dockerfile +3 -2
- app.py +102 -102
- flask_app.py +184 -0
- requirements.txt +1 -0
- templates/index.html +451 -0
Dockerfile
CHANGED
|
@@ -65,6 +65,7 @@ EXPOSE 7860
|
|
| 65 |
|
| 66 |
# Set environment variables
|
| 67 |
ENV PYTHONUNBUFFERED=1
|
|
|
|
| 68 |
|
| 69 |
-
# Run the application
|
| 70 |
-
CMD ["python", "
|
|
|
|
| 65 |
|
| 66 |
# Set environment variables
|
| 67 |
ENV PYTHONUNBUFFERED=1
|
| 68 |
+
ENV FLASK_APP=flask_app.py
|
| 69 |
|
| 70 |
+
# Run the Flask application
|
| 71 |
+
CMD ["python", "flask_app.py"]
|
app.py
CHANGED
|
@@ -1,103 +1,103 @@
|
|
| 1 |
-
import spaces
|
| 2 |
-
import os
|
| 3 |
-
from huggingface_hub import login
|
| 4 |
-
import gradio as gr
|
| 5 |
-
from cached_path import cached_path
|
| 6 |
-
import tempfile
|
| 7 |
-
from vinorm import TTSnorm
|
| 8 |
-
|
| 9 |
-
from f5_tts.model import DiT
|
| 10 |
-
from f5_tts.infer.utils_infer import (
|
| 11 |
-
preprocess_ref_audio_text,
|
| 12 |
-
load_vocoder,
|
| 13 |
-
load_model,
|
| 14 |
-
infer_process,
|
| 15 |
-
save_spectrogram,
|
| 16 |
-
)
|
| 17 |
-
|
| 18 |
-
# Retrieve token from secrets
|
| 19 |
-
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
# Log in to Hugging Face
|
| 23 |
-
if hf_token:
|
| 24 |
-
login(token=hf_token)
|
| 25 |
-
|
| 26 |
-
def post_process(text):
|
| 27 |
-
text = " " + text + " "
|
| 28 |
-
text = text.replace(" . . ", " . ")
|
| 29 |
-
text = " " + text + " "
|
| 30 |
-
text = text.replace(" .. ", " . ")
|
| 31 |
-
text = " " + text + " "
|
| 32 |
-
text = text.replace(" , , ", " , ")
|
| 33 |
-
text = " " + text + " "
|
| 34 |
-
text = text.replace(" ,, ", " , ")
|
| 35 |
-
text = " " + text + " "
|
| 36 |
-
text = text.replace('"', "")
|
| 37 |
-
return " ".join(text.split())
|
| 38 |
-
|
| 39 |
-
# Load models
|
| 40 |
-
vocoder = load_vocoder()
|
| 41 |
-
model = load_model(
|
| 42 |
-
DiT,
|
| 43 |
-
dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4),
|
| 44 |
-
ckpt_path=str(cached_path("hf://hynt/F5-TTS-Vietnamese-ViVoice/model_last.pt")),
|
| 45 |
-
vocab_file=str(cached_path("hf://hynt/F5-TTS-Vietnamese-ViVoice/config.json")),
|
| 46 |
-
)
|
| 47 |
-
|
| 48 |
-
@spaces.GPU
|
| 49 |
-
def infer_tts(ref_audio_orig: str, gen_text: str, speed: float = 1.0, request: gr.Request = None):
|
| 50 |
-
|
| 51 |
-
if not ref_audio_orig:
|
| 52 |
-
raise gr.Error("Please upload a sample audio file.")
|
| 53 |
-
if not gen_text.strip():
|
| 54 |
-
raise gr.Error("Please enter the text content to generate voice.")
|
| 55 |
-
if len(gen_text.split()) > 1000:
|
| 56 |
-
raise gr.Error("Please enter text content with less than 1000 words.")
|
| 57 |
-
|
| 58 |
-
try:
|
| 59 |
-
ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, "")
|
| 60 |
-
final_wave, final_sample_rate, spectrogram = infer_process(
|
| 61 |
-
ref_audio, ref_text.lower(), post_process(TTSnorm(gen_text)).lower(), model, vocoder, speed=speed
|
| 62 |
-
)
|
| 63 |
-
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
|
| 64 |
-
spectrogram_path = tmp_spectrogram.name
|
| 65 |
-
save_spectrogram(spectrogram, spectrogram_path)
|
| 66 |
-
|
| 67 |
-
return (final_sample_rate, final_wave), spectrogram_path
|
| 68 |
-
except Exception as e:
|
| 69 |
-
raise gr.Error(f"Error generating voice: {e}")
|
| 70 |
-
|
| 71 |
-
# Gradio UI
|
| 72 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 73 |
-
gr.Markdown("""
|
| 74 |
-
# 🎤 F5-TTS: Vietnamese Text-to-Speech Synthesis.
|
| 75 |
-
# The model was trained with approximately 1000 hours of data on a RTX 3090 GPU.
|
| 76 |
-
Enter text and upload a sample voice to generate natural speech.
|
| 77 |
-
""")
|
| 78 |
-
|
| 79 |
-
with gr.Row():
|
| 80 |
-
ref_audio = gr.Audio(label="🔊 Sample Voice", type="filepath")
|
| 81 |
-
gen_text = gr.Textbox(label="📝 Text", placeholder="Enter the text to generate voice...", lines=3)
|
| 82 |
-
|
| 83 |
-
speed = gr.Slider(0.3, 2.0, value=1.0, step=0.1, label="⚡ Speed")
|
| 84 |
-
btn_synthesize = gr.Button("🔥 Generate Voice")
|
| 85 |
-
|
| 86 |
-
with gr.Row():
|
| 87 |
-
output_audio = gr.Audio(label="🎧 Generated Audio", type="numpy")
|
| 88 |
-
output_spectrogram = gr.Image(label="📊 Spectrogram")
|
| 89 |
-
|
| 90 |
-
model_limitations = gr.Textbox(
|
| 91 |
-
value="""1. This model may not perform well with numerical characters, dates, special characters, etc. => A text normalization module is needed.
|
| 92 |
-
2. The rhythm of some generated audios may be inconsistent or choppy => It is recommended to select clearly pronounced sample audios with minimal pauses for better synthesis quality.
|
| 93 |
-
3. Default, reference audio text uses the pho-whisper-medium model, which may not always accurately recognize Vietnamese, resulting in poor voice synthesis quality.
|
| 94 |
-
4. Inference with overly long paragraphs may produce poor results.""",
|
| 95 |
-
label="❗ Model Limitations",
|
| 96 |
-
lines=4,
|
| 97 |
-
interactive=False
|
| 98 |
-
)
|
| 99 |
-
|
| 100 |
-
btn_synthesize.click(infer_tts, inputs=[ref_audio, gen_text, speed], outputs=[output_audio, output_spectrogram])
|
| 101 |
-
|
| 102 |
-
# Run Gradio with share=True to get a gradio.live link
|
| 103 |
demo.queue().launch()
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import os
|
| 3 |
+
from huggingface_hub import login
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from cached_path import cached_path
|
| 6 |
+
import tempfile
|
| 7 |
+
from vinorm import TTSnorm
|
| 8 |
+
|
| 9 |
+
from f5_tts.model import DiT
|
| 10 |
+
from f5_tts.infer.utils_infer import (
|
| 11 |
+
preprocess_ref_audio_text,
|
| 12 |
+
load_vocoder,
|
| 13 |
+
load_model,
|
| 14 |
+
infer_process,
|
| 15 |
+
save_spectrogram,
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
# Retrieve token from secrets
|
| 19 |
+
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
# Log in to Hugging Face
|
| 23 |
+
if hf_token:
|
| 24 |
+
login(token=hf_token)
|
| 25 |
+
|
| 26 |
+
def post_process(text):
|
| 27 |
+
text = " " + text + " "
|
| 28 |
+
text = text.replace(" . . ", " . ")
|
| 29 |
+
text = " " + text + " "
|
| 30 |
+
text = text.replace(" .. ", " . ")
|
| 31 |
+
text = " " + text + " "
|
| 32 |
+
text = text.replace(" , , ", " , ")
|
| 33 |
+
text = " " + text + " "
|
| 34 |
+
text = text.replace(" ,, ", " , ")
|
| 35 |
+
text = " " + text + " "
|
| 36 |
+
text = text.replace('"', "")
|
| 37 |
+
return " ".join(text.split())
|
| 38 |
+
|
| 39 |
+
# Load models
|
| 40 |
+
vocoder = load_vocoder()
|
| 41 |
+
model = load_model(
|
| 42 |
+
DiT,
|
| 43 |
+
dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4),
|
| 44 |
+
ckpt_path=str(cached_path("hf://hynt/F5-TTS-Vietnamese-ViVoice/model_last.pt")),
|
| 45 |
+
vocab_file=str(cached_path("hf://hynt/F5-TTS-Vietnamese-ViVoice/config.json")),
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
@spaces.GPU
|
| 49 |
+
def infer_tts(ref_audio_orig: str, gen_text: str, speed: float = 1.0, request: gr.Request = None):
|
| 50 |
+
|
| 51 |
+
if not ref_audio_orig:
|
| 52 |
+
raise gr.Error("Please upload a sample audio file.")
|
| 53 |
+
if not gen_text.strip():
|
| 54 |
+
raise gr.Error("Please enter the text content to generate voice.")
|
| 55 |
+
if len(gen_text.split()) > 1000:
|
| 56 |
+
raise gr.Error("Please enter text content with less than 1000 words.")
|
| 57 |
+
|
| 58 |
+
try:
|
| 59 |
+
ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, "")
|
| 60 |
+
final_wave, final_sample_rate, spectrogram = infer_process(
|
| 61 |
+
ref_audio, ref_text.lower(), post_process(TTSnorm(gen_text)).lower(), model, vocoder, speed=speed
|
| 62 |
+
)
|
| 63 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
|
| 64 |
+
spectrogram_path = tmp_spectrogram.name
|
| 65 |
+
save_spectrogram(spectrogram, spectrogram_path)
|
| 66 |
+
|
| 67 |
+
return (final_sample_rate, final_wave), spectrogram_path
|
| 68 |
+
except Exception as e:
|
| 69 |
+
raise gr.Error(f"Error generating voice: {e}")
|
| 70 |
+
|
| 71 |
+
# Gradio UI
|
| 72 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 73 |
+
gr.Markdown("""
|
| 74 |
+
# 🎤 F5-TTS: Vietnamese Text-to-Speech Synthesis.
|
| 75 |
+
# The model was trained with approximately 1000 hours of data on a RTX 3090 GPU.
|
| 76 |
+
Enter text and upload a sample voice to generate natural speech.
|
| 77 |
+
""")
|
| 78 |
+
|
| 79 |
+
with gr.Row():
|
| 80 |
+
ref_audio = gr.Audio(label="🔊 Sample Voice", type="filepath")
|
| 81 |
+
gen_text = gr.Textbox(label="📝 Text", placeholder="Enter the text to generate voice...", lines=3)
|
| 82 |
+
|
| 83 |
+
speed = gr.Slider(0.3, 2.0, value=1.0, step=0.1, label="⚡ Speed")
|
| 84 |
+
btn_synthesize = gr.Button("🔥 Generate Voice")
|
| 85 |
+
|
| 86 |
+
with gr.Row():
|
| 87 |
+
output_audio = gr.Audio(label="🎧 Generated Audio", type="numpy")
|
| 88 |
+
output_spectrogram = gr.Image(label="📊 Spectrogram")
|
| 89 |
+
|
| 90 |
+
model_limitations = gr.Textbox(
|
| 91 |
+
value="""1. This model may not perform well with numerical characters, dates, special characters, etc. => A text normalization module is needed.
|
| 92 |
+
2. The rhythm of some generated audios may be inconsistent or choppy => It is recommended to select clearly pronounced sample audios with minimal pauses for better synthesis quality.
|
| 93 |
+
3. Default, reference audio text uses the pho-whisper-medium model, which may not always accurately recognize Vietnamese, resulting in poor voice synthesis quality.
|
| 94 |
+
4. Inference with overly long paragraphs may produce poor results.""",
|
| 95 |
+
label="❗ Model Limitations",
|
| 96 |
+
lines=4,
|
| 97 |
+
interactive=False
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
btn_synthesize.click(infer_tts, inputs=[ref_audio, gen_text, speed], outputs=[output_audio, output_spectrogram])
|
| 101 |
+
|
| 102 |
+
# Run Gradio with share=True to get a gradio.live link
|
| 103 |
demo.queue().launch()
|
flask_app.py
ADDED
|
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import base64
|
| 3 |
+
import tempfile
|
| 4 |
+
from flask import Flask, render_template, request, jsonify, send_file
|
| 5 |
+
from werkzeug.utils import secure_filename
|
| 6 |
+
from cached_path import cached_path
|
| 7 |
+
from vinorm import TTSnorm
|
| 8 |
+
from huggingface_hub import login
|
| 9 |
+
import numpy as np
|
| 10 |
+
import soundfile as sf
|
| 11 |
+
|
| 12 |
+
from f5_tts.model import DiT
|
| 13 |
+
from f5_tts.infer.utils_infer import (
|
| 14 |
+
preprocess_ref_audio_text,
|
| 15 |
+
load_vocoder,
|
| 16 |
+
load_model,
|
| 17 |
+
infer_process,
|
| 18 |
+
save_spectrogram,
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
app = Flask(__name__)
|
| 22 |
+
app.config['MAX_CONTENT_LENGTH'] = 50 * 1024 * 1024 # 50MB max file size
|
| 23 |
+
app.config['UPLOAD_FOLDER'] = tempfile.gettempdir()
|
| 24 |
+
app.config['ALLOWED_EXTENSIONS'] = {'wav', 'mp3', 'ogg', 'flac', 'm4a'}
|
| 25 |
+
|
| 26 |
+
# Retrieve token from secrets
|
| 27 |
+
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
| 28 |
+
|
| 29 |
+
# Log in to Hugging Face
|
| 30 |
+
if hf_token:
|
| 31 |
+
login(token=hf_token)
|
| 32 |
+
|
| 33 |
+
def post_process(text):
|
| 34 |
+
"""Post process text by cleaning up punctuation and spacing"""
|
| 35 |
+
text = " " + text + " "
|
| 36 |
+
text = text.replace(" . . ", " . ")
|
| 37 |
+
text = " " + text + " "
|
| 38 |
+
text = text.replace(" .. ", " . ")
|
| 39 |
+
text = " " + text + " "
|
| 40 |
+
text = text.replace(" , , ", " , ")
|
| 41 |
+
text = " " + text + " "
|
| 42 |
+
text = text.replace(" ,, ", " , ")
|
| 43 |
+
text = " " + text + " "
|
| 44 |
+
text = text.replace('"', "")
|
| 45 |
+
return " ".join(text.split())
|
| 46 |
+
|
| 47 |
+
def allowed_file(filename):
|
| 48 |
+
"""Check if file extension is allowed"""
|
| 49 |
+
return '.' in filename and filename.rsplit('.', 1)[1].lower() in app.config['ALLOWED_EXTENSIONS']
|
| 50 |
+
|
| 51 |
+
# Load models once at startup
|
| 52 |
+
print("Loading models...")
|
| 53 |
+
vocoder = load_vocoder()
|
| 54 |
+
model = load_model(
|
| 55 |
+
DiT,
|
| 56 |
+
dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4),
|
| 57 |
+
ckpt_path=str(cached_path("hf://hynt/F5-TTS-Vietnamese-ViVoice/model_last.pt")),
|
| 58 |
+
vocab_file=str(cached_path("hf://hynt/F5-TTS-Vietnamese-ViVoice/config.json")),
|
| 59 |
+
)
|
| 60 |
+
print("Models loaded successfully!")
|
| 61 |
+
|
| 62 |
+
@app.route('/')
|
| 63 |
+
def index():
|
| 64 |
+
"""Render the main page"""
|
| 65 |
+
return render_template('index.html')
|
| 66 |
+
|
| 67 |
+
@app.route('/api/synthesize', methods=['POST'])
|
| 68 |
+
def synthesize():
|
| 69 |
+
"""
|
| 70 |
+
API endpoint for text-to-speech synthesis
|
| 71 |
+
|
| 72 |
+
Parameters:
|
| 73 |
+
- ref_audio: audio file (multipart/form-data)
|
| 74 |
+
- gen_text: text to synthesize (string)
|
| 75 |
+
- speed: synthesis speed (float, default: 1.0)
|
| 76 |
+
|
| 77 |
+
Returns:
|
| 78 |
+
- JSON with audio data (base64) and spectrogram
|
| 79 |
+
"""
|
| 80 |
+
try:
|
| 81 |
+
# Validate request
|
| 82 |
+
if 'ref_audio' not in request.files:
|
| 83 |
+
return jsonify({'error': 'No audio file provided'}), 400
|
| 84 |
+
|
| 85 |
+
file = request.files['ref_audio']
|
| 86 |
+
if file.filename == '':
|
| 87 |
+
return jsonify({'error': 'No file selected'}), 400
|
| 88 |
+
|
| 89 |
+
if not allowed_file(file.filename):
|
| 90 |
+
return jsonify({'error': 'Invalid file format. Allowed: wav, mp3, ogg, flac, m4a'}), 400
|
| 91 |
+
|
| 92 |
+
gen_text = request.form.get('gen_text', '').strip()
|
| 93 |
+
if not gen_text:
|
| 94 |
+
return jsonify({'error': 'No text provided'}), 400
|
| 95 |
+
|
| 96 |
+
if len(gen_text.split()) > 1000:
|
| 97 |
+
return jsonify({'error': 'Text too long. Maximum 1000 words'}), 400
|
| 98 |
+
|
| 99 |
+
speed = float(request.form.get('speed', 1.0))
|
| 100 |
+
if speed < 0.3 or speed > 2.0:
|
| 101 |
+
return jsonify({'error': 'Speed must be between 0.3 and 2.0'}), 400
|
| 102 |
+
|
| 103 |
+
# Save uploaded file
|
| 104 |
+
filename = secure_filename(file.filename)
|
| 105 |
+
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
|
| 106 |
+
file.save(filepath)
|
| 107 |
+
|
| 108 |
+
# Process audio
|
| 109 |
+
ref_audio, ref_text = preprocess_ref_audio_text(filepath, "")
|
| 110 |
+
|
| 111 |
+
# Generate speech
|
| 112 |
+
final_wave, final_sample_rate, spectrogram = infer_process(
|
| 113 |
+
ref_audio,
|
| 114 |
+
ref_text.lower(),
|
| 115 |
+
post_process(TTSnorm(gen_text)).lower(),
|
| 116 |
+
model,
|
| 117 |
+
vocoder,
|
| 118 |
+
speed=speed
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
# Save audio to temporary file
|
| 122 |
+
audio_path = os.path.join(app.config['UPLOAD_FOLDER'], 'output.wav')
|
| 123 |
+
sf.write(audio_path, final_wave, final_sample_rate)
|
| 124 |
+
|
| 125 |
+
# Convert audio to base64
|
| 126 |
+
with open(audio_path, 'rb') as f:
|
| 127 |
+
audio_base64 = base64.b64encode(f.read()).decode('utf-8')
|
| 128 |
+
|
| 129 |
+
# Save spectrogram
|
| 130 |
+
spec_path = os.path.join(app.config['UPLOAD_FOLDER'], 'spectrogram.png')
|
| 131 |
+
save_spectrogram(spectrogram, spec_path)
|
| 132 |
+
|
| 133 |
+
# Convert spectrogram to base64
|
| 134 |
+
with open(spec_path, 'rb') as f:
|
| 135 |
+
spec_base64 = base64.b64encode(f.read()).decode('utf-8')
|
| 136 |
+
|
| 137 |
+
# Cleanup
|
| 138 |
+
os.remove(filepath)
|
| 139 |
+
os.remove(audio_path)
|
| 140 |
+
os.remove(spec_path)
|
| 141 |
+
if os.path.exists(ref_audio):
|
| 142 |
+
os.remove(ref_audio)
|
| 143 |
+
|
| 144 |
+
return jsonify({
|
| 145 |
+
'success': True,
|
| 146 |
+
'audio': audio_base64,
|
| 147 |
+
'spectrogram': spec_base64,
|
| 148 |
+
'sample_rate': final_sample_rate,
|
| 149 |
+
'message': 'Speech synthesized successfully'
|
| 150 |
+
})
|
| 151 |
+
|
| 152 |
+
except Exception as e:
|
| 153 |
+
return jsonify({'error': f'Error generating speech: {str(e)}'}), 500
|
| 154 |
+
|
| 155 |
+
@app.route('/api/health', methods=['GET'])
|
| 156 |
+
def health():
|
| 157 |
+
"""Health check endpoint"""
|
| 158 |
+
return jsonify({
|
| 159 |
+
'status': 'healthy',
|
| 160 |
+
'model': 'F5-TTS Vietnamese',
|
| 161 |
+
'version': '1.0.0'
|
| 162 |
+
})
|
| 163 |
+
|
| 164 |
+
@app.route('/api/info', methods=['GET'])
|
| 165 |
+
def info():
|
| 166 |
+
"""Get model information and limitations"""
|
| 167 |
+
return jsonify({
|
| 168 |
+
'model_name': 'F5-TTS Vietnamese',
|
| 169 |
+
'description': 'Vietnamese Text-to-Speech synthesis model trained on ~1000 hours of data',
|
| 170 |
+
'limitations': [
|
| 171 |
+
'May not perform well with numerical characters, dates, special characters',
|
| 172 |
+
'Rhythm of some generated audios may be inconsistent or choppy',
|
| 173 |
+
'Reference audio text uses pho-whisper-medium which may not always accurately recognize Vietnamese',
|
| 174 |
+
'Inference with overly long paragraphs may produce poor results'
|
| 175 |
+
],
|
| 176 |
+
'max_words': 1000,
|
| 177 |
+
'speed_range': [0.3, 2.0],
|
| 178 |
+
'supported_audio_formats': ['wav', 'mp3', 'ogg', 'flac', 'm4a']
|
| 179 |
+
})
|
| 180 |
+
|
| 181 |
+
if __name__ == '__main__':
|
| 182 |
+
# Run Flask app
|
| 183 |
+
port = int(os.environ.get('PORT', 5000))
|
| 184 |
+
app.run(host='0.0.0.0', port=port, debug=False)
|
requirements.txt
CHANGED
|
@@ -7,6 +7,7 @@ vinorm
|
|
| 7 |
cached_path
|
| 8 |
huggingface_hub
|
| 9 |
gradio
|
|
|
|
| 10 |
accelerate>=0.33.0
|
| 11 |
click
|
| 12 |
datasets
|
|
|
|
| 7 |
cached_path
|
| 8 |
huggingface_hub
|
| 9 |
gradio
|
| 10 |
+
flask
|
| 11 |
accelerate>=0.33.0
|
| 12 |
click
|
| 13 |
datasets
|
templates/index.html
ADDED
|
@@ -0,0 +1,451 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
+
<html lang="vi">
|
| 3 |
+
<head>
|
| 4 |
+
<meta charset="UTF-8">
|
| 5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 6 |
+
<title>F5-TTS Vietnamese - Text-to-Speech</title>
|
| 7 |
+
<style>
|
| 8 |
+
* {
|
| 9 |
+
margin: 0;
|
| 10 |
+
padding: 0;
|
| 11 |
+
box-sizing: border-box;
|
| 12 |
+
}
|
| 13 |
+
|
| 14 |
+
body {
|
| 15 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
| 16 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 17 |
+
min-height: 100vh;
|
| 18 |
+
padding: 20px;
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
.container {
|
| 22 |
+
max-width: 900px;
|
| 23 |
+
margin: 0 auto;
|
| 24 |
+
background: white;
|
| 25 |
+
border-radius: 20px;
|
| 26 |
+
box-shadow: 0 20px 60px rgba(0, 0, 0, 0.3);
|
| 27 |
+
overflow: hidden;
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
+
.header {
|
| 31 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 32 |
+
color: white;
|
| 33 |
+
padding: 30px;
|
| 34 |
+
text-align: center;
|
| 35 |
+
}
|
| 36 |
+
|
| 37 |
+
.header h1 {
|
| 38 |
+
font-size: 2.5em;
|
| 39 |
+
margin-bottom: 10px;
|
| 40 |
+
}
|
| 41 |
+
|
| 42 |
+
.header p {
|
| 43 |
+
font-size: 1.1em;
|
| 44 |
+
opacity: 0.9;
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
+
.content {
|
| 48 |
+
padding: 40px;
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
.form-group {
|
| 52 |
+
margin-bottom: 25px;
|
| 53 |
+
}
|
| 54 |
+
|
| 55 |
+
label {
|
| 56 |
+
display: block;
|
| 57 |
+
font-weight: 600;
|
| 58 |
+
margin-bottom: 10px;
|
| 59 |
+
color: #333;
|
| 60 |
+
font-size: 1.1em;
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
.file-input-wrapper {
|
| 64 |
+
position: relative;
|
| 65 |
+
overflow: hidden;
|
| 66 |
+
display: inline-block;
|
| 67 |
+
width: 100%;
|
| 68 |
+
}
|
| 69 |
+
|
| 70 |
+
.file-input-wrapper input[type=file] {
|
| 71 |
+
position: absolute;
|
| 72 |
+
left: -9999px;
|
| 73 |
+
}
|
| 74 |
+
|
| 75 |
+
.file-input-label {
|
| 76 |
+
display: block;
|
| 77 |
+
padding: 15px 20px;
|
| 78 |
+
background: #f8f9fa;
|
| 79 |
+
border: 2px dashed #667eea;
|
| 80 |
+
border-radius: 10px;
|
| 81 |
+
cursor: pointer;
|
| 82 |
+
text-align: center;
|
| 83 |
+
transition: all 0.3s;
|
| 84 |
+
}
|
| 85 |
+
|
| 86 |
+
.file-input-label:hover {
|
| 87 |
+
background: #e7e9fc;
|
| 88 |
+
border-color: #764ba2;
|
| 89 |
+
}
|
| 90 |
+
|
| 91 |
+
.file-name {
|
| 92 |
+
margin-top: 10px;
|
| 93 |
+
font-size: 0.9em;
|
| 94 |
+
color: #666;
|
| 95 |
+
}
|
| 96 |
+
|
| 97 |
+
textarea {
|
| 98 |
+
width: 100%;
|
| 99 |
+
padding: 15px;
|
| 100 |
+
border: 2px solid #e0e0e0;
|
| 101 |
+
border-radius: 10px;
|
| 102 |
+
font-size: 1em;
|
| 103 |
+
resize: vertical;
|
| 104 |
+
min-height: 120px;
|
| 105 |
+
font-family: inherit;
|
| 106 |
+
transition: border-color 0.3s;
|
| 107 |
+
}
|
| 108 |
+
|
| 109 |
+
textarea:focus {
|
| 110 |
+
outline: none;
|
| 111 |
+
border-color: #667eea;
|
| 112 |
+
}
|
| 113 |
+
|
| 114 |
+
.slider-group {
|
| 115 |
+
margin-bottom: 25px;
|
| 116 |
+
}
|
| 117 |
+
|
| 118 |
+
.slider-label {
|
| 119 |
+
display: flex;
|
| 120 |
+
justify-content: space-between;
|
| 121 |
+
margin-bottom: 10px;
|
| 122 |
+
}
|
| 123 |
+
|
| 124 |
+
input[type="range"] {
|
| 125 |
+
width: 100%;
|
| 126 |
+
height: 8px;
|
| 127 |
+
border-radius: 5px;
|
| 128 |
+
background: #e0e0e0;
|
| 129 |
+
outline: none;
|
| 130 |
+
-webkit-appearance: none;
|
| 131 |
+
}
|
| 132 |
+
|
| 133 |
+
input[type="range"]::-webkit-slider-thumb {
|
| 134 |
+
-webkit-appearance: none;
|
| 135 |
+
appearance: none;
|
| 136 |
+
width: 20px;
|
| 137 |
+
height: 20px;
|
| 138 |
+
border-radius: 50%;
|
| 139 |
+
background: #667eea;
|
| 140 |
+
cursor: pointer;
|
| 141 |
+
}
|
| 142 |
+
|
| 143 |
+
input[type="range"]::-moz-range-thumb {
|
| 144 |
+
width: 20px;
|
| 145 |
+
height: 20px;
|
| 146 |
+
border-radius: 50%;
|
| 147 |
+
background: #667eea;
|
| 148 |
+
cursor: pointer;
|
| 149 |
+
}
|
| 150 |
+
|
| 151 |
+
.btn {
|
| 152 |
+
width: 100%;
|
| 153 |
+
padding: 15px;
|
| 154 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 155 |
+
color: white;
|
| 156 |
+
border: none;
|
| 157 |
+
border-radius: 10px;
|
| 158 |
+
font-size: 1.2em;
|
| 159 |
+
font-weight: 600;
|
| 160 |
+
cursor: pointer;
|
| 161 |
+
transition: transform 0.2s, box-shadow 0.2s;
|
| 162 |
+
}
|
| 163 |
+
|
| 164 |
+
.btn:hover {
|
| 165 |
+
transform: translateY(-2px);
|
| 166 |
+
box-shadow: 0 10px 20px rgba(102, 126, 234, 0.4);
|
| 167 |
+
}
|
| 168 |
+
|
| 169 |
+
.btn:disabled {
|
| 170 |
+
background: #ccc;
|
| 171 |
+
cursor: not-allowed;
|
| 172 |
+
transform: none;
|
| 173 |
+
}
|
| 174 |
+
|
| 175 |
+
.loading {
|
| 176 |
+
display: none;
|
| 177 |
+
text-align: center;
|
| 178 |
+
margin: 20px 0;
|
| 179 |
+
}
|
| 180 |
+
|
| 181 |
+
.spinner {
|
| 182 |
+
border: 4px solid #f3f3f3;
|
| 183 |
+
border-top: 4px solid #667eea;
|
| 184 |
+
border-radius: 50%;
|
| 185 |
+
width: 40px;
|
| 186 |
+
height: 40px;
|
| 187 |
+
animation: spin 1s linear infinite;
|
| 188 |
+
margin: 0 auto;
|
| 189 |
+
}
|
| 190 |
+
|
| 191 |
+
@keyframes spin {
|
| 192 |
+
0% { transform: rotate(0deg); }
|
| 193 |
+
100% { transform: rotate(360deg); }
|
| 194 |
+
}
|
| 195 |
+
|
| 196 |
+
.result {
|
| 197 |
+
display: none;
|
| 198 |
+
margin-top: 30px;
|
| 199 |
+
padding: 20px;
|
| 200 |
+
background: #f8f9fa;
|
| 201 |
+
border-radius: 10px;
|
| 202 |
+
}
|
| 203 |
+
|
| 204 |
+
.result h3 {
|
| 205 |
+
margin-bottom: 15px;
|
| 206 |
+
color: #333;
|
| 207 |
+
}
|
| 208 |
+
|
| 209 |
+
audio {
|
| 210 |
+
width: 100%;
|
| 211 |
+
margin-bottom: 15px;
|
| 212 |
+
}
|
| 213 |
+
|
| 214 |
+
.spectrogram {
|
| 215 |
+
width: 100%;
|
| 216 |
+
border-radius: 10px;
|
| 217 |
+
margin-top: 15px;
|
| 218 |
+
}
|
| 219 |
+
|
| 220 |
+
.error {
|
| 221 |
+
display: none;
|
| 222 |
+
padding: 15px;
|
| 223 |
+
background: #fee;
|
| 224 |
+
border-left: 4px solid #f44;
|
| 225 |
+
border-radius: 5px;
|
| 226 |
+
color: #c00;
|
| 227 |
+
margin-top: 20px;
|
| 228 |
+
}
|
| 229 |
+
|
| 230 |
+
.info-box {
|
| 231 |
+
background: #fff3cd;
|
| 232 |
+
border-left: 4px solid #ffc107;
|
| 233 |
+
padding: 15px;
|
| 234 |
+
border-radius: 5px;
|
| 235 |
+
margin-top: 30px;
|
| 236 |
+
}
|
| 237 |
+
|
| 238 |
+
.info-box h4 {
|
| 239 |
+
margin-bottom: 10px;
|
| 240 |
+
color: #856404;
|
| 241 |
+
}
|
| 242 |
+
|
| 243 |
+
.info-box ul {
|
| 244 |
+
margin-left: 20px;
|
| 245 |
+
}
|
| 246 |
+
|
| 247 |
+
.info-box li {
|
| 248 |
+
margin-bottom: 5px;
|
| 249 |
+
color: #856404;
|
| 250 |
+
}
|
| 251 |
+
|
| 252 |
+
.api-docs {
|
| 253 |
+
margin-top: 30px;
|
| 254 |
+
padding: 20px;
|
| 255 |
+
background: #f8f9fa;
|
| 256 |
+
border-radius: 10px;
|
| 257 |
+
}
|
| 258 |
+
|
| 259 |
+
.api-docs h3 {
|
| 260 |
+
margin-bottom: 15px;
|
| 261 |
+
color: #333;
|
| 262 |
+
}
|
| 263 |
+
|
| 264 |
+
.api-docs pre {
|
| 265 |
+
background: #2d2d2d;
|
| 266 |
+
color: #f8f8f2;
|
| 267 |
+
padding: 15px;
|
| 268 |
+
border-radius: 5px;
|
| 269 |
+
overflow-x: auto;
|
| 270 |
+
font-size: 0.9em;
|
| 271 |
+
}
|
| 272 |
+
|
| 273 |
+
.api-docs code {
|
| 274 |
+
font-family: 'Courier New', monospace;
|
| 275 |
+
}
|
| 276 |
+
</style>
|
| 277 |
+
</head>
|
| 278 |
+
<body>
|
| 279 |
+
<div class="container">
|
| 280 |
+
<div class="header">
|
| 281 |
+
<h1>🎤 F5-TTS Vietnamese</h1>
|
| 282 |
+
<p>Text-to-Speech Synthesis • Trained on ~1000 hours of data</p>
|
| 283 |
+
</div>
|
| 284 |
+
|
| 285 |
+
<div class="content">
|
| 286 |
+
<form id="ttsForm">
|
| 287 |
+
<div class="form-group">
|
| 288 |
+
<label>🔊 Sample Voice (Audio Reference)</label>
|
| 289 |
+
<div class="file-input-wrapper">
|
| 290 |
+
<input type="file" id="refAudio" name="ref_audio" accept="audio/*" required>
|
| 291 |
+
<label for="refAudio" class="file-input-label">
|
| 292 |
+
📁 Click to upload audio file
|
| 293 |
+
</label>
|
| 294 |
+
</div>
|
| 295 |
+
<div class="file-name" id="fileName"></div>
|
| 296 |
+
</div>
|
| 297 |
+
|
| 298 |
+
<div class="form-group">
|
| 299 |
+
<label for="genText">📝 Text to Synthesize</label>
|
| 300 |
+
<textarea id="genText" name="gen_text" placeholder="Nhập văn bản tiếng Việt để tạo giọng nói..." required></textarea>
|
| 301 |
+
</div>
|
| 302 |
+
|
| 303 |
+
<div class="slider-group">
|
| 304 |
+
<div class="slider-label">
|
| 305 |
+
<label>⚡ Speed</label>
|
| 306 |
+
<span id="speedValue">1.0x</span>
|
| 307 |
+
</div>
|
| 308 |
+
<input type="range" id="speed" name="speed" min="0.3" max="2.0" step="0.1" value="1.0">
|
| 309 |
+
</div>
|
| 310 |
+
|
| 311 |
+
<button type="submit" class="btn" id="submitBtn">
|
| 312 |
+
🔥 Generate Speech
|
| 313 |
+
</button>
|
| 314 |
+
</form>
|
| 315 |
+
|
| 316 |
+
<div class="loading" id="loading">
|
| 317 |
+
<div class="spinner"></div>
|
| 318 |
+
<p style="margin-top: 15px; color: #666;">Generating speech... Please wait...</p>
|
| 319 |
+
</div>
|
| 320 |
+
|
| 321 |
+
<div class="error" id="error"></div>
|
| 322 |
+
|
| 323 |
+
<div class="result" id="result">
|
| 324 |
+
<h3>🎧 Generated Audio</h3>
|
| 325 |
+
<audio id="audioPlayer" controls></audio>
|
| 326 |
+
<h3>📊 Spectrogram</h3>
|
| 327 |
+
<img id="spectrogram" class="spectrogram" alt="Spectrogram">
|
| 328 |
+
</div>
|
| 329 |
+
|
| 330 |
+
<div class="info-box">
|
| 331 |
+
<h4>❗ Model Limitations</h4>
|
| 332 |
+
<ul>
|
| 333 |
+
<li>May not perform well with numbers, dates, and special characters</li>
|
| 334 |
+
<li>Rhythm may be inconsistent with some texts</li>
|
| 335 |
+
<li>Works best with clear, well-pronounced reference audio</li>
|
| 336 |
+
<li>Maximum 1000 words per request</li>
|
| 337 |
+
</ul>
|
| 338 |
+
</div>
|
| 339 |
+
|
| 340 |
+
<div class="api-docs">
|
| 341 |
+
<h3>📡 API Documentation</h3>
|
| 342 |
+
<p style="margin-bottom: 15px;">Use the following endpoint to integrate with your application:</p>
|
| 343 |
+
|
| 344 |
+
<h4>POST /api/synthesize</h4>
|
| 345 |
+
<pre><code>curl -X POST http://localhost:5000/api/synthesize \
|
| 346 |
+
-F "[email protected]" \
|
| 347 |
+
-F "gen_text=Xin chào, đây là giọng nói tổng hợp" \
|
| 348 |
+
-F "speed=1.0"</code></pre>
|
| 349 |
+
|
| 350 |
+
<h4 style="margin-top: 20px;">Response:</h4>
|
| 351 |
+
<pre><code>{
|
| 352 |
+
"success": true,
|
| 353 |
+
"audio": "base64_encoded_audio_data",
|
| 354 |
+
"spectrogram": "base64_encoded_image_data",
|
| 355 |
+
"sample_rate": 24000,
|
| 356 |
+
"message": "Speech synthesized successfully"
|
| 357 |
+
}</code></pre>
|
| 358 |
+
|
| 359 |
+
<h4 style="margin-top: 20px;">GET /api/health</h4>
|
| 360 |
+
<p style="margin-bottom: 10px;">Check if the service is running:</p>
|
| 361 |
+
<pre><code>curl http://localhost:5000/api/health</code></pre>
|
| 362 |
+
|
| 363 |
+
<h4 style="margin-top: 20px;">GET /api/info</h4>
|
| 364 |
+
<p style="margin-bottom: 10px;">Get model information:</p>
|
| 365 |
+
<pre><code>curl http://localhost:5000/api/info</code></pre>
|
| 366 |
+
</div>
|
| 367 |
+
</div>
|
| 368 |
+
</div>
|
| 369 |
+
|
| 370 |
+
<script>
|
| 371 |
+
const form = document.getElementById('ttsForm');
|
| 372 |
+
const refAudioInput = document.getElementById('refAudio');
|
| 373 |
+
const fileNameDiv = document.getElementById('fileName');
|
| 374 |
+
const speedSlider = document.getElementById('speed');
|
| 375 |
+
const speedValue = document.getElementById('speedValue');
|
| 376 |
+
const submitBtn = document.getElementById('submitBtn');
|
| 377 |
+
const loading = document.getElementById('loading');
|
| 378 |
+
const error = document.getElementById('error');
|
| 379 |
+
const result = document.getElementById('result');
|
| 380 |
+
const audioPlayer = document.getElementById('audioPlayer');
|
| 381 |
+
const spectrogram = document.getElementById('spectrogram');
|
| 382 |
+
|
| 383 |
+
// Update file name display
|
| 384 |
+
refAudioInput.addEventListener('change', function(e) {
|
| 385 |
+
if (e.target.files.length > 0) {
|
| 386 |
+
fileNameDiv.textContent = '✅ ' + e.target.files[0].name;
|
| 387 |
+
}
|
| 388 |
+
});
|
| 389 |
+
|
| 390 |
+
// Update speed value display
|
| 391 |
+
speedSlider.addEventListener('input', function(e) {
|
| 392 |
+
speedValue.textContent = e.target.value + 'x';
|
| 393 |
+
});
|
| 394 |
+
|
| 395 |
+
// Handle form submission
|
| 396 |
+
form.addEventListener('submit', async function(e) {
|
| 397 |
+
e.preventDefault();
|
| 398 |
+
|
| 399 |
+
// Hide previous results and errors
|
| 400 |
+
result.style.display = 'none';
|
| 401 |
+
error.style.display = 'none';
|
| 402 |
+
|
| 403 |
+
// Show loading
|
| 404 |
+
loading.style.display = 'block';
|
| 405 |
+
submitBtn.disabled = true;
|
| 406 |
+
|
| 407 |
+
try {
|
| 408 |
+
const formData = new FormData(form);
|
| 409 |
+
|
| 410 |
+
const response = await fetch('/api/synthesize', {
|
| 411 |
+
method: 'POST',
|
| 412 |
+
body: formData
|
| 413 |
+
});
|
| 414 |
+
|
| 415 |
+
const data = await response.json();
|
| 416 |
+
|
| 417 |
+
if (response.ok && data.success) {
|
| 418 |
+
// Display audio
|
| 419 |
+
const audioBlob = base64ToBlob(data.audio, 'audio/wav');
|
| 420 |
+
const audioUrl = URL.createObjectURL(audioBlob);
|
| 421 |
+
audioPlayer.src = audioUrl;
|
| 422 |
+
|
| 423 |
+
// Display spectrogram
|
| 424 |
+
spectrogram.src = 'data:image/png;base64,' + data.spectrogram;
|
| 425 |
+
|
| 426 |
+
result.style.display = 'block';
|
| 427 |
+
} else {
|
| 428 |
+
throw new Error(data.error || 'Unknown error occurred');
|
| 429 |
+
}
|
| 430 |
+
} catch (err) {
|
| 431 |
+
error.textContent = '❌ ' + err.message;
|
| 432 |
+
error.style.display = 'block';
|
| 433 |
+
} finally {
|
| 434 |
+
loading.style.display = 'none';
|
| 435 |
+
submitBtn.disabled = false;
|
| 436 |
+
}
|
| 437 |
+
});
|
| 438 |
+
|
| 439 |
+
// Helper function to convert base64 to Blob
|
| 440 |
+
function base64ToBlob(base64, mimeType) {
|
| 441 |
+
const byteCharacters = atob(base64);
|
| 442 |
+
const byteNumbers = new Array(byteCharacters.length);
|
| 443 |
+
for (let i = 0; i < byteCharacters.length; i++) {
|
| 444 |
+
byteNumbers[i] = byteCharacters.charCodeAt(i);
|
| 445 |
+
}
|
| 446 |
+
const byteArray = new Uint8Array(byteNumbers);
|
| 447 |
+
return new Blob([byteArray], { type: mimeType });
|
| 448 |
+
}
|
| 449 |
+
</script>
|
| 450 |
+
</body>
|
| 451 |
+
</html>
|