Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,103 +1,103 @@
|
|
| 1 |
-
import spaces
|
| 2 |
-
import os
|
| 3 |
-
from huggingface_hub import login
|
| 4 |
-
import gradio as gr
|
| 5 |
-
from cached_path import cached_path
|
| 6 |
-
import tempfile
|
| 7 |
-
from vinorm import TTSnorm
|
| 8 |
-
|
| 9 |
-
from f5_tts.model import DiT
|
| 10 |
-
from f5_tts.infer.utils_infer import (
|
| 11 |
-
preprocess_ref_audio_text,
|
| 12 |
-
load_vocoder,
|
| 13 |
-
load_model,
|
| 14 |
-
infer_process,
|
| 15 |
-
save_spectrogram,
|
| 16 |
-
)
|
| 17 |
-
|
| 18 |
-
# Retrieve token from secrets
|
| 19 |
-
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
# Log in to Hugging Face
|
| 23 |
-
if hf_token:
|
| 24 |
-
login(token=hf_token)
|
| 25 |
-
|
| 26 |
-
def post_process(text):
|
| 27 |
-
text = " " + text + " "
|
| 28 |
-
text = text.replace(" . . ", " . ")
|
| 29 |
-
text = " " + text + " "
|
| 30 |
-
text = text.replace(" .. ", " . ")
|
| 31 |
-
text = " " + text + " "
|
| 32 |
-
text = text.replace(" , , ", " , ")
|
| 33 |
-
text = " " + text + " "
|
| 34 |
-
text = text.replace(" ,, ", " , ")
|
| 35 |
-
text = " " + text + " "
|
| 36 |
-
text = text.replace('"', "")
|
| 37 |
-
return " ".join(text.split())
|
| 38 |
-
|
| 39 |
-
# Load models
|
| 40 |
-
vocoder = load_vocoder()
|
| 41 |
-
model = load_model(
|
| 42 |
-
DiT,
|
| 43 |
-
dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4),
|
| 44 |
-
ckpt_path=str(cached_path("hf://hynt/F5-TTS-Vietnamese-ViVoice/model_last.pt")),
|
| 45 |
-
vocab_file=str(cached_path("hf://hynt/F5-TTS-Vietnamese-ViVoice/config.json")),
|
| 46 |
-
)
|
| 47 |
-
|
| 48 |
-
@spaces.GPU
|
| 49 |
-
def infer_tts(ref_audio_orig: str, gen_text: str, speed: float = 1.0, request: gr.Request = None):
|
| 50 |
-
|
| 51 |
-
if not ref_audio_orig:
|
| 52 |
-
raise gr.Error("Please upload a sample audio file.")
|
| 53 |
-
if not gen_text.strip():
|
| 54 |
-
raise gr.Error("Please enter the text content to generate voice.")
|
| 55 |
-
if len(gen_text.split()) > 1000:
|
| 56 |
-
raise gr.Error("Please enter text content with less than 1000 words.")
|
| 57 |
-
|
| 58 |
-
try:
|
| 59 |
-
ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, "")
|
| 60 |
-
final_wave, final_sample_rate, spectrogram = infer_process(
|
| 61 |
-
ref_audio, ref_text.lower(), post_process(TTSnorm(gen_text)).lower(), model, vocoder, speed=speed
|
| 62 |
-
)
|
| 63 |
-
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
|
| 64 |
-
spectrogram_path = tmp_spectrogram.name
|
| 65 |
-
save_spectrogram(spectrogram, spectrogram_path)
|
| 66 |
-
|
| 67 |
-
return (final_sample_rate, final_wave), spectrogram_path
|
| 68 |
-
except Exception as e:
|
| 69 |
-
raise gr.Error(f"Error generating voice: {e}")
|
| 70 |
-
|
| 71 |
-
# Gradio UI
|
| 72 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 73 |
-
gr.Markdown("""
|
| 74 |
-
# 🎤 F5-TTS: Vietnamese Text-to-Speech Synthesis.
|
| 75 |
-
# The model was trained with approximately 1000 hours of data on a RTX 3090 GPU.
|
| 76 |
-
Enter text and upload a sample voice to generate natural speech.
|
| 77 |
-
""")
|
| 78 |
-
|
| 79 |
-
with gr.Row():
|
| 80 |
-
ref_audio = gr.Audio(label="🔊 Sample Voice", type="filepath")
|
| 81 |
-
gen_text = gr.Textbox(label="📝 Text", placeholder="Enter the text to generate voice...", lines=3)
|
| 82 |
-
|
| 83 |
-
speed = gr.Slider(0.3, 2.0, value=1.0, step=0.1, label="⚡ Speed")
|
| 84 |
-
btn_synthesize = gr.Button("🔥 Generate Voice")
|
| 85 |
-
|
| 86 |
-
with gr.Row():
|
| 87 |
-
output_audio = gr.Audio(label="🎧 Generated Audio", type="numpy")
|
| 88 |
-
output_spectrogram = gr.Image(label="📊 Spectrogram")
|
| 89 |
-
|
| 90 |
-
model_limitations = gr.Textbox(
|
| 91 |
-
value="""1. This model may not perform well with numerical characters, dates, special characters, etc. => A text normalization module is needed.
|
| 92 |
-
2. The rhythm of some generated audios may be inconsistent or choppy => It is recommended to select clearly pronounced sample audios with minimal pauses for better synthesis quality.
|
| 93 |
-
3. Default, reference audio text uses the pho-whisper-medium model, which may not always accurately recognize Vietnamese, resulting in poor voice synthesis quality.
|
| 94 |
-
4. Inference with overly long paragraphs may produce poor results.""",
|
| 95 |
-
label="❗ Model Limitations",
|
| 96 |
-
lines=4,
|
| 97 |
-
interactive=False
|
| 98 |
-
)
|
| 99 |
-
|
| 100 |
-
btn_synthesize.click(infer_tts, inputs=[ref_audio, gen_text, speed], outputs=[output_audio, output_spectrogram])
|
| 101 |
-
|
| 102 |
-
# Run Gradio with share=True to get a gradio.live link
|
| 103 |
-
demo.queue().launch()
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import os
|
| 3 |
+
from huggingface_hub import login
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from cached_path import cached_path
|
| 6 |
+
import tempfile
|
| 7 |
+
from vinorm import TTSnorm
|
| 8 |
+
|
| 9 |
+
from f5_tts.model import DiT
|
| 10 |
+
from f5_tts.infer.utils_infer import (
|
| 11 |
+
preprocess_ref_audio_text,
|
| 12 |
+
load_vocoder,
|
| 13 |
+
load_model,
|
| 14 |
+
infer_process,
|
| 15 |
+
save_spectrogram,
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
# Retrieve token from secrets
|
| 19 |
+
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
# Log in to Hugging Face
|
| 23 |
+
if hf_token:
|
| 24 |
+
login(token=hf_token)
|
| 25 |
+
|
| 26 |
+
def post_process(text):
|
| 27 |
+
text = " " + text + " "
|
| 28 |
+
text = text.replace(" . . ", " . ")
|
| 29 |
+
text = " " + text + " "
|
| 30 |
+
text = text.replace(" .. ", " . ")
|
| 31 |
+
text = " " + text + " "
|
| 32 |
+
text = text.replace(" , , ", " , ")
|
| 33 |
+
text = " " + text + " "
|
| 34 |
+
text = text.replace(" ,, ", " , ")
|
| 35 |
+
text = " " + text + " "
|
| 36 |
+
text = text.replace('"', "")
|
| 37 |
+
return " ".join(text.split())
|
| 38 |
+
|
| 39 |
+
# Load models
|
| 40 |
+
vocoder = load_vocoder()
|
| 41 |
+
model = load_model(
|
| 42 |
+
DiT,
|
| 43 |
+
dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4),
|
| 44 |
+
ckpt_path=str(cached_path("hf://hynt/F5-TTS-Vietnamese-ViVoice/model_last.pt")),
|
| 45 |
+
vocab_file=str(cached_path("hf://hynt/F5-TTS-Vietnamese-ViVoice/config.json")),
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
@spaces.GPU
|
| 49 |
+
def infer_tts(ref_audio_orig: str, gen_text: str, speed: float = 1.0, request: gr.Request = None):
|
| 50 |
+
|
| 51 |
+
if not ref_audio_orig:
|
| 52 |
+
raise gr.Error("Please upload a sample audio file.")
|
| 53 |
+
if not gen_text.strip():
|
| 54 |
+
raise gr.Error("Please enter the text content to generate voice.")
|
| 55 |
+
if len(gen_text.split()) > 1000:
|
| 56 |
+
raise gr.Error("Please enter text content with less than 1000 words.")
|
| 57 |
+
|
| 58 |
+
try:
|
| 59 |
+
ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, "")
|
| 60 |
+
final_wave, final_sample_rate, spectrogram = infer_process(
|
| 61 |
+
ref_audio, ref_text.lower(), post_process(TTSnorm(gen_text)).lower(), model, vocoder, speed=speed
|
| 62 |
+
)
|
| 63 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
|
| 64 |
+
spectrogram_path = tmp_spectrogram.name
|
| 65 |
+
save_spectrogram(spectrogram, spectrogram_path)
|
| 66 |
+
|
| 67 |
+
return (final_sample_rate, final_wave), spectrogram_path
|
| 68 |
+
except Exception as e:
|
| 69 |
+
raise gr.Error(f"Error generating voice: {e}")
|
| 70 |
+
|
| 71 |
+
# Gradio UI
|
| 72 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 73 |
+
gr.Markdown("""
|
| 74 |
+
# 🎤 F5-TTS: Vietnamese Text-to-Speech Synthesis.
|
| 75 |
+
# The model was trained with approximately 1000 hours of data on a RTX 3090 GPU.
|
| 76 |
+
Enter text and upload a sample voice to generate natural speech.
|
| 77 |
+
""")
|
| 78 |
+
|
| 79 |
+
with gr.Row():
|
| 80 |
+
ref_audio = gr.Audio(label="🔊 Sample Voice", type="filepath")
|
| 81 |
+
gen_text = gr.Textbox(label="📝 Text", placeholder="Enter the text to generate voice...", lines=3)
|
| 82 |
+
|
| 83 |
+
speed = gr.Slider(0.3, 2.0, value=1.0, step=0.1, label="⚡ Speed")
|
| 84 |
+
btn_synthesize = gr.Button("🔥 Generate Voice")
|
| 85 |
+
|
| 86 |
+
with gr.Row():
|
| 87 |
+
output_audio = gr.Audio(label="🎧 Generated Audio", type="numpy")
|
| 88 |
+
output_spectrogram = gr.Image(label="📊 Spectrogram")
|
| 89 |
+
|
| 90 |
+
model_limitations = gr.Textbox(
|
| 91 |
+
value="""1. This model may not perform well with numerical characters, dates, special characters, etc. => A text normalization module is needed.
|
| 92 |
+
2. The rhythm of some generated audios may be inconsistent or choppy => It is recommended to select clearly pronounced sample audios with minimal pauses for better synthesis quality.
|
| 93 |
+
3. Default, reference audio text uses the pho-whisper-medium model, which may not always accurately recognize Vietnamese, resulting in poor voice synthesis quality.
|
| 94 |
+
4. Inference with overly long paragraphs may produce poor results.""",
|
| 95 |
+
label="❗ Model Limitations",
|
| 96 |
+
lines=4,
|
| 97 |
+
interactive=False
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
btn_synthesize.click(infer_tts, inputs=[ref_audio, gen_text, speed], outputs=[output_audio, output_spectrogram])
|
| 101 |
+
|
| 102 |
+
# Run Gradio with share=True to get a gradio.live link
|
| 103 |
+
demo.queue().launch(share=True)
|