Upload models_prediction_sinhala.py
Browse files- models_prediction_sinhala.py +230 -0
models_prediction_sinhala.py
ADDED
|
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Optional, Tuple
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from torch import Tensor
|
| 5 |
+
from torch import nn
|
| 6 |
+
from transformers import RobertaModel
|
| 7 |
+
|
| 8 |
+
from faknow.model.layers.layer import TextCNNLayer
|
| 9 |
+
from faknow.model.model import AbstractModel
|
| 10 |
+
import pandas as pd
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class _MLP(nn.Module):
|
| 14 |
+
def __init__(self,
|
| 15 |
+
input_dim: int,
|
| 16 |
+
embed_dims: List[int],
|
| 17 |
+
dropout_rate: float,
|
| 18 |
+
output_layer=True):
|
| 19 |
+
super().__init__()
|
| 20 |
+
layers = list()
|
| 21 |
+
for embed_dim in embed_dims:
|
| 22 |
+
layers.append(nn.Linear(input_dim, embed_dim))
|
| 23 |
+
layers.append(nn.BatchNorm1d(embed_dim))
|
| 24 |
+
layers.append(nn.ReLU())
|
| 25 |
+
layers.append(nn.Dropout(p=dropout_rate))
|
| 26 |
+
input_dim = embed_dim
|
| 27 |
+
if output_layer:
|
| 28 |
+
layers.append(torch.nn.Linear(input_dim, 1))
|
| 29 |
+
self.mlp = torch.nn.Sequential(*layers)
|
| 30 |
+
|
| 31 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 32 |
+
"""
|
| 33 |
+
|
| 34 |
+
Args:
|
| 35 |
+
x (Tensor): shared feature from domain and text, shape=(batch_size, embed_dim)
|
| 36 |
+
|
| 37 |
+
"""
|
| 38 |
+
return self.mlp(x)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class _MaskAttentionLayer(torch.nn.Module):
|
| 42 |
+
"""
|
| 43 |
+
Compute attention layer
|
| 44 |
+
"""
|
| 45 |
+
def __init__(self, input_size: int):
|
| 46 |
+
super(_MaskAttentionLayer, self).__init__()
|
| 47 |
+
self.attention_layer = torch.nn.Linear(input_size, 1)
|
| 48 |
+
|
| 49 |
+
def forward(self,
|
| 50 |
+
inputs: Tensor,
|
| 51 |
+
mask: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]:
|
| 52 |
+
weights = self.attention_layer(inputs).view(-1, inputs.size(1))
|
| 53 |
+
if mask is not None:
|
| 54 |
+
weights = weights.masked_fill(mask == 0, float("-inf"))
|
| 55 |
+
weights = torch.softmax(weights, dim=-1).unsqueeze(1)
|
| 56 |
+
outputs = torch.matmul(weights, inputs).squeeze(1)
|
| 57 |
+
return outputs, weights
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
class MDFEND(AbstractModel):
|
| 61 |
+
r"""
|
| 62 |
+
MDFEND: Multi-domain Fake News Detection, CIKM 2021
|
| 63 |
+
paper: https://dl.acm.org/doi/10.1145/3459637.3482139
|
| 64 |
+
code: https://github.com/kennqiang/MDFEND-Weibo21
|
| 65 |
+
"""
|
| 66 |
+
def __init__(self,
|
| 67 |
+
pre_trained_bert_name: str,
|
| 68 |
+
domain_num: int,
|
| 69 |
+
mlp_dims: Optional[List[int]] = None,
|
| 70 |
+
dropout_rate=0.2,
|
| 71 |
+
expert_num=5):
|
| 72 |
+
"""
|
| 73 |
+
|
| 74 |
+
Args:
|
| 75 |
+
pre_trained_bert_name (str): the name or local path of pre-trained bert model
|
| 76 |
+
domain_num (int): total number of all domains
|
| 77 |
+
mlp_dims (List[int]): a list of the dimensions in MLP layer, if None, [384] will be taken as default, default=384
|
| 78 |
+
dropout_rate (float): rate of Dropout layer, default=0.2
|
| 79 |
+
expert_num (int): number of experts also called TextCNNLayer, default=5
|
| 80 |
+
"""
|
| 81 |
+
super(MDFEND, self).__init__()
|
| 82 |
+
self.domain_num = domain_num
|
| 83 |
+
self.expert_num = expert_num
|
| 84 |
+
self.bert = RobertaModel.from_pretrained(
|
| 85 |
+
pre_trained_bert_name).requires_grad_(False)
|
| 86 |
+
self.embedding_size = self.bert.config.hidden_size
|
| 87 |
+
self.loss_func = nn.BCELoss()
|
| 88 |
+
if mlp_dims is None:
|
| 89 |
+
mlp_dims = [384]
|
| 90 |
+
|
| 91 |
+
filter_num = 64
|
| 92 |
+
filter_sizes = [1, 2, 3, 5, 10]
|
| 93 |
+
experts = [
|
| 94 |
+
TextCNNLayer(self.embedding_size, filter_num, filter_sizes)
|
| 95 |
+
for _ in range(self.expert_num)
|
| 96 |
+
]
|
| 97 |
+
self.experts = nn.ModuleList(experts)
|
| 98 |
+
|
| 99 |
+
self.gate = nn.Sequential(
|
| 100 |
+
nn.Linear(self.embedding_size * 2, mlp_dims[-1]), nn.ReLU(),
|
| 101 |
+
nn.Linear(mlp_dims[-1], self.expert_num), nn.Softmax(dim=1))
|
| 102 |
+
|
| 103 |
+
self.attention = _MaskAttentionLayer(self.embedding_size)
|
| 104 |
+
|
| 105 |
+
self.domain_embedder = nn.Embedding(num_embeddings=self.domain_num,
|
| 106 |
+
embedding_dim=self.embedding_size)
|
| 107 |
+
self.classifier = _MLP(320, mlp_dims, dropout_rate)
|
| 108 |
+
|
| 109 |
+
def forward(self, token_id: Tensor, mask: Tensor,
|
| 110 |
+
domain: Tensor) -> Tensor:
|
| 111 |
+
"""
|
| 112 |
+
|
| 113 |
+
Args:
|
| 114 |
+
token_id (Tensor): token ids from bert tokenizer, shape=(batch_size, max_len)
|
| 115 |
+
mask (Tensor): mask from bert tokenizer, shape=(batch_size, max_len)
|
| 116 |
+
domain (Tensor): domain id, shape=(batch_size,)
|
| 117 |
+
|
| 118 |
+
Returns:
|
| 119 |
+
FloatTensor: the prediction of being fake, shape=(batch_size,)
|
| 120 |
+
"""
|
| 121 |
+
text_embedding = self.bert(token_id,
|
| 122 |
+
attention_mask=mask).last_hidden_state
|
| 123 |
+
attention_feature, _ = self.attention(text_embedding, mask)
|
| 124 |
+
|
| 125 |
+
domain_embedding = self.domain_embedder(domain.view(-1, 1)).squeeze(1)
|
| 126 |
+
|
| 127 |
+
gate_input = torch.cat([domain_embedding, attention_feature], dim=-1)
|
| 128 |
+
gate_output = self.gate(gate_input)
|
| 129 |
+
|
| 130 |
+
shared_feature = 0
|
| 131 |
+
for i in range(self.expert_num):
|
| 132 |
+
expert_feature = self.experts[i](text_embedding)
|
| 133 |
+
shared_feature += (expert_feature * gate_output[:, i].unsqueeze(1))
|
| 134 |
+
|
| 135 |
+
label_pred = self.classifier(shared_feature)
|
| 136 |
+
|
| 137 |
+
return torch.sigmoid(label_pred.squeeze(1))
|
| 138 |
+
|
| 139 |
+
def calculate_loss(self, data) -> Tensor:
|
| 140 |
+
"""
|
| 141 |
+
calculate loss via BCELoss
|
| 142 |
+
|
| 143 |
+
Args:
|
| 144 |
+
data (dict): batch data dict
|
| 145 |
+
|
| 146 |
+
Returns:
|
| 147 |
+
loss (Tensor): loss value
|
| 148 |
+
"""
|
| 149 |
+
|
| 150 |
+
token_ids = data['text']['token_id']
|
| 151 |
+
masks = data['text']['mask']
|
| 152 |
+
domains = data['domain']
|
| 153 |
+
labels = data['label']
|
| 154 |
+
output = self.forward(token_ids, masks, domains)
|
| 155 |
+
return self.loss_func(output, labels.float())
|
| 156 |
+
|
| 157 |
+
def predict(self, data_without_label) -> Tensor:
|
| 158 |
+
"""
|
| 159 |
+
predict the probability of being fake news
|
| 160 |
+
|
| 161 |
+
Args:
|
| 162 |
+
data_without_label (Dict[str, Any]): batch data dict
|
| 163 |
+
|
| 164 |
+
Returns:
|
| 165 |
+
Tensor: one-hot probability, shape=(batch_size, 2)
|
| 166 |
+
"""
|
| 167 |
+
|
| 168 |
+
token_ids = data_without_label['text']['token_id']
|
| 169 |
+
masks = data_without_label['text']['mask']
|
| 170 |
+
domains = data_without_label['domain']
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
output_prob = self.forward(token_ids, masks,domains)
|
| 174 |
+
|
| 175 |
+
return output_prob
|
| 176 |
+
from faknow.data.dataset.text import TextDataset
|
| 177 |
+
from faknow.data.process.text_process import TokenizerFromPreTrained
|
| 178 |
+
from faknow.evaluate.evaluator import Evaluator
|
| 179 |
+
|
| 180 |
+
import torch
|
| 181 |
+
from torch.utils.data import DataLoader
|
| 182 |
+
testing_path = "data/test_data.json"
|
| 183 |
+
|
| 184 |
+
df = pd.read_json(testing_path)
|
| 185 |
+
df.head()
|
| 186 |
+
df =df[:100]
|
| 187 |
+
df["label"] = int(0)
|
| 188 |
+
df.head()
|
| 189 |
+
print(len(df))
|
| 190 |
+
new_testing_json_path = "data/testing.json"
|
| 191 |
+
df.to_json(new_testing_json_path, orient='records')
|
| 192 |
+
|
| 193 |
+
MODEL_SAVE_PATH = "models/last-epoch-model-2024-03-08-15_34_03_6.pth"
|
| 194 |
+
|
| 195 |
+
max_len, bert = 160 , 'sinhala-nlp/sinbert-sold-si'
|
| 196 |
+
tokenizer = TokenizerFromPreTrained(max_len, bert)
|
| 197 |
+
|
| 198 |
+
# dataset
|
| 199 |
+
batch_size = 100
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
testing_path = path + testing_json
|
| 203 |
+
|
| 204 |
+
testing_set = TextDataset(testing_path, ['text'], tokenizer)
|
| 205 |
+
testing_loader = DataLoader(testing_set, batch_size, shuffle=False)
|
| 206 |
+
|
| 207 |
+
# prepare model
|
| 208 |
+
domain_num = 3
|
| 209 |
+
|
| 210 |
+
model = MDFEND(bert, domain_num , expert_num=18 , mlp_dims = [5080 ,4020, 3010, 2024 ,1012 ,606 , 400])
|
| 211 |
+
model.load_state_dict(torch.load(f=MODEL_SAVE_PATH, map_location=torch.device('cpu')))
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
outputs = []
|
| 216 |
+
for batch_data in testing_loader:
|
| 217 |
+
outputs.append(model.predict(batch_data))
|
| 218 |
+
outputs
|
| 219 |
+
# 1 ====> offensive
|
| 220 |
+
# 0 ====> not offensive
|
| 221 |
+
label = []
|
| 222 |
+
for output in outputs:
|
| 223 |
+
for out in output:
|
| 224 |
+
output_prob = out.item()
|
| 225 |
+
if output_prob >= 0.5:
|
| 226 |
+
label.append(1)
|
| 227 |
+
else:
|
| 228 |
+
label.append(0)
|
| 229 |
+
|
| 230 |
+
label
|