Fix mic audio input
Browse files
app.py
CHANGED
|
@@ -1,10 +1,12 @@
|
|
| 1 |
import csv
|
| 2 |
-
|
|
|
|
| 3 |
from typing import Tuple
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
| 7 |
from whisper_bidec import decode_wav, get_logits_processor, load_corpus_from_sentences
|
|
|
|
| 8 |
|
| 9 |
|
| 10 |
def _parse_file(file_path: str) -> list[str]:
|
|
@@ -22,9 +24,22 @@ def _parse_file(file_path: str) -> list[str]:
|
|
| 22 |
return sentences
|
| 23 |
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
def transcribe(
|
| 26 |
processor_name: str,
|
| 27 |
-
|
| 28 |
bias_strength: float,
|
| 29 |
bias_text: str | None,
|
| 30 |
bias_text_file: str | None,
|
|
@@ -36,21 +51,25 @@ def transcribe(
|
|
| 36 |
|
| 37 |
if bias_text:
|
| 38 |
sentences = bias_text.split(",")
|
| 39 |
-
elif
|
| 40 |
sentences = _parse_file(bias_text_file)
|
| 41 |
|
|
|
|
|
|
|
| 42 |
if sentences:
|
| 43 |
corpus = load_corpus_from_sentences(sentences, processor)
|
| 44 |
logits_processor = get_logits_processor(
|
| 45 |
corpus=corpus, processor=processor, bias_towards_lm=bias_strength
|
| 46 |
)
|
| 47 |
text_with_bias = decode_wav(
|
| 48 |
-
model, processor,
|
| 49 |
)
|
| 50 |
else:
|
| 51 |
text_with_bias = ""
|
| 52 |
|
| 53 |
-
text_no_bias = decode_wav(
|
|
|
|
|
|
|
| 54 |
|
| 55 |
return text_no_bias, text_with_bias
|
| 56 |
|
|
|
|
| 1 |
import csv
|
| 2 |
+
import os
|
| 3 |
+
import tempfile
|
| 4 |
from typing import Tuple
|
| 5 |
|
| 6 |
import gradio as gr
|
| 7 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
| 8 |
from whisper_bidec import decode_wav, get_logits_processor, load_corpus_from_sentences
|
| 9 |
+
from pydub import AudioSegment
|
| 10 |
|
| 11 |
|
| 12 |
def _parse_file(file_path: str) -> list[str]:
|
|
|
|
| 24 |
return sentences
|
| 25 |
|
| 26 |
|
| 27 |
+
def _convert_audio(input_audio_path: str) -> str:
|
| 28 |
+
"""Whisper decoder expects wav files with 16kHz sample rate and mono channel.
|
| 29 |
+
Convert the audio file to this format, save it in a tmp file and return the path.
|
| 30 |
+
"""
|
| 31 |
+
fd, tmp_path = tempfile.mkstemp(suffix=".wav")
|
| 32 |
+
os.close(fd) # Close file descriptor
|
| 33 |
+
|
| 34 |
+
audio = AudioSegment.from_file(input_audio_path)
|
| 35 |
+
audio = audio.set_channels(1).set_frame_rate(16000)
|
| 36 |
+
audio.export(tmp_path, format="wav")
|
| 37 |
+
return tmp_path
|
| 38 |
+
|
| 39 |
+
|
| 40 |
def transcribe(
|
| 41 |
processor_name: str,
|
| 42 |
+
audio_path: str,
|
| 43 |
bias_strength: float,
|
| 44 |
bias_text: str | None,
|
| 45 |
bias_text_file: str | None,
|
|
|
|
| 51 |
|
| 52 |
if bias_text:
|
| 53 |
sentences = bias_text.split(",")
|
| 54 |
+
elif bias_text_file:
|
| 55 |
sentences = _parse_file(bias_text_file)
|
| 56 |
|
| 57 |
+
converted_audio_path = _convert_audio(audio_path)
|
| 58 |
+
|
| 59 |
if sentences:
|
| 60 |
corpus = load_corpus_from_sentences(sentences, processor)
|
| 61 |
logits_processor = get_logits_processor(
|
| 62 |
corpus=corpus, processor=processor, bias_towards_lm=bias_strength
|
| 63 |
)
|
| 64 |
text_with_bias = decode_wav(
|
| 65 |
+
model, processor, converted_audio_path, logits_processor=logits_processor
|
| 66 |
)
|
| 67 |
else:
|
| 68 |
text_with_bias = ""
|
| 69 |
|
| 70 |
+
text_no_bias = decode_wav(
|
| 71 |
+
model, processor, converted_audio_path, logits_processor=None
|
| 72 |
+
)
|
| 73 |
|
| 74 |
return text_no_bias, text_with_bias
|
| 75 |
|