|
|
from dataclasses import dataclass |
|
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
|
from diffusers.loaders import PeftAdapterMixin |
|
|
from diffusers.models.modeling_utils import ModelMixin |
|
|
from diffusers.models.attention_processor import AttentionProcessor |
|
|
from diffusers.utils import ( |
|
|
USE_PEFT_BACKEND, |
|
|
is_torch_version, |
|
|
logging, |
|
|
scale_lora_layers, |
|
|
unscale_lora_layers, |
|
|
) |
|
|
from diffusers.models.controlnet import BaseOutput, zero_module |
|
|
from diffusers.models.embeddings import ( |
|
|
CombinedTimestepGuidanceTextProjEmbeddings, |
|
|
CombinedTimestepTextProjEmbeddings, |
|
|
FluxPosEmbed, |
|
|
) |
|
|
from diffusers.models.modeling_outputs import Transformer2DModelOutput |
|
|
from transformer_flux import ( |
|
|
FluxSingleTransformerBlock, |
|
|
FluxTransformerBlock, |
|
|
) |
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
@dataclass |
|
|
class FluxControlNetOutput(BaseOutput): |
|
|
controlnet_block_samples: Tuple[torch.Tensor] |
|
|
controlnet_single_block_samples: Tuple[torch.Tensor] |
|
|
|
|
|
|
|
|
class FluxControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin): |
|
|
_supports_gradient_checkpointing = True |
|
|
|
|
|
@register_to_config |
|
|
def __init__( |
|
|
self, |
|
|
patch_size: int = 1, |
|
|
in_channels: int = 64, |
|
|
num_layers: int = 19, |
|
|
num_single_layers: int = 38, |
|
|
attention_head_dim: int = 128, |
|
|
num_attention_heads: int = 24, |
|
|
joint_attention_dim: int = 4096, |
|
|
pooled_projection_dim: int = 768, |
|
|
guidance_embeds: bool = False, |
|
|
axes_dims_rope: List[int] = [16, 56, 56], |
|
|
extra_condition_channels: int = 1 * 4, |
|
|
): |
|
|
super().__init__() |
|
|
self.out_channels = in_channels |
|
|
self.inner_dim = num_attention_heads * attention_head_dim |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope) |
|
|
text_time_guidance_cls = ( |
|
|
CombinedTimestepGuidanceTextProjEmbeddings |
|
|
if guidance_embeds |
|
|
else CombinedTimestepTextProjEmbeddings |
|
|
) |
|
|
self.time_text_embed = text_time_guidance_cls( |
|
|
embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim |
|
|
) |
|
|
|
|
|
self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim) |
|
|
self.x_embedder = nn.Linear(in_channels, self.inner_dim) |
|
|
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
|
[ |
|
|
FluxTransformerBlock( |
|
|
dim=self.inner_dim, |
|
|
num_attention_heads=num_attention_heads, |
|
|
attention_head_dim=attention_head_dim, |
|
|
) |
|
|
for _ in range(num_layers) |
|
|
] |
|
|
) |
|
|
|
|
|
self.single_transformer_blocks = nn.ModuleList( |
|
|
[ |
|
|
FluxSingleTransformerBlock( |
|
|
dim=self.inner_dim, |
|
|
num_attention_heads=num_attention_heads, |
|
|
attention_head_dim=attention_head_dim, |
|
|
) |
|
|
for _ in range(num_single_layers) |
|
|
] |
|
|
) |
|
|
|
|
|
|
|
|
self.controlnet_blocks = nn.ModuleList([]) |
|
|
for _ in range(len(self.transformer_blocks)): |
|
|
self.controlnet_blocks.append( |
|
|
zero_module(nn.Linear(self.inner_dim, self.inner_dim)) |
|
|
) |
|
|
|
|
|
self.controlnet_single_blocks = nn.ModuleList([]) |
|
|
for _ in range(len(self.single_transformer_blocks)): |
|
|
self.controlnet_single_blocks.append( |
|
|
zero_module(nn.Linear(self.inner_dim, self.inner_dim)) |
|
|
) |
|
|
|
|
|
self.controlnet_x_embedder = zero_module( |
|
|
torch.nn.Linear(in_channels + extra_condition_channels, self.inner_dim) |
|
|
) |
|
|
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
@property |
|
|
|
|
|
def attn_processors(self): |
|
|
r""" |
|
|
Returns: |
|
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with |
|
|
indexed by its weight name. |
|
|
""" |
|
|
|
|
|
processors = {} |
|
|
|
|
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): |
|
|
if hasattr(module, "get_processor"): |
|
|
processors[f"{name}.processor"] = module.get_processor() |
|
|
|
|
|
for sub_name, child in module.named_children(): |
|
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) |
|
|
|
|
|
return processors |
|
|
|
|
|
for name, module in self.named_children(): |
|
|
fn_recursive_add_processors(name, module, processors) |
|
|
|
|
|
return processors |
|
|
|
|
|
|
|
|
def set_attn_processor(self, processor): |
|
|
r""" |
|
|
Sets the attention processor to use to compute attention. |
|
|
|
|
|
Parameters: |
|
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): |
|
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor |
|
|
for **all** `Attention` layers. |
|
|
|
|
|
If `processor` is a dict, the key needs to define the path to the corresponding cross attention |
|
|
processor. This is strongly recommended when setting trainable attention processors. |
|
|
|
|
|
""" |
|
|
count = len(self.attn_processors.keys()) |
|
|
|
|
|
if isinstance(processor, dict) and len(processor) != count: |
|
|
raise ValueError( |
|
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" |
|
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." |
|
|
) |
|
|
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): |
|
|
if hasattr(module, "set_processor"): |
|
|
if not isinstance(processor, dict): |
|
|
module.set_processor(processor) |
|
|
else: |
|
|
module.set_processor(processor.pop(f"{name}.processor")) |
|
|
|
|
|
for sub_name, child in module.named_children(): |
|
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) |
|
|
|
|
|
for name, module in self.named_children(): |
|
|
fn_recursive_attn_processor(name, module, processor) |
|
|
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
|
if hasattr(module, "gradient_checkpointing"): |
|
|
module.gradient_checkpointing = value |
|
|
|
|
|
@classmethod |
|
|
def from_transformer( |
|
|
cls, |
|
|
transformer, |
|
|
num_layers: int = 4, |
|
|
num_single_layers: int = 10, |
|
|
attention_head_dim: int = 128, |
|
|
num_attention_heads: int = 24, |
|
|
load_weights_from_transformer=True, |
|
|
): |
|
|
config = transformer.config |
|
|
config["num_layers"] = num_layers |
|
|
config["num_single_layers"] = num_single_layers |
|
|
config["attention_head_dim"] = attention_head_dim |
|
|
config["num_attention_heads"] = num_attention_heads |
|
|
|
|
|
controlnet = cls(**config) |
|
|
|
|
|
if load_weights_from_transformer: |
|
|
controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict()) |
|
|
controlnet.time_text_embed.load_state_dict( |
|
|
transformer.time_text_embed.state_dict() |
|
|
) |
|
|
controlnet.context_embedder.load_state_dict( |
|
|
transformer.context_embedder.state_dict() |
|
|
) |
|
|
controlnet.x_embedder.load_state_dict(transformer.x_embedder.state_dict()) |
|
|
controlnet.transformer_blocks.load_state_dict( |
|
|
transformer.transformer_blocks.state_dict(), strict=False |
|
|
) |
|
|
controlnet.single_transformer_blocks.load_state_dict( |
|
|
transformer.single_transformer_blocks.state_dict(), strict=False |
|
|
) |
|
|
|
|
|
controlnet.controlnet_x_embedder = zero_module( |
|
|
controlnet.controlnet_x_embedder |
|
|
) |
|
|
|
|
|
return controlnet |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
controlnet_cond: torch.Tensor, |
|
|
conditioning_scale: float = 1.0, |
|
|
encoder_hidden_states: torch.Tensor = None, |
|
|
pooled_projections: torch.Tensor = None, |
|
|
timestep: torch.LongTensor = None, |
|
|
img_ids: torch.Tensor = None, |
|
|
txt_ids: torch.Tensor = None, |
|
|
guidance: torch.Tensor = None, |
|
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
|
return_dict: bool = True, |
|
|
) -> Union[torch.FloatTensor, Transformer2DModelOutput]: |
|
|
""" |
|
|
The [`FluxTransformer2DModel`] forward method. |
|
|
|
|
|
Args: |
|
|
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): |
|
|
Input `hidden_states`. |
|
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): |
|
|
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. |
|
|
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected |
|
|
from the embeddings of input conditions. |
|
|
timestep ( `torch.LongTensor`): |
|
|
Used to indicate denoising step. |
|
|
block_controlnet_hidden_states: (`list` of `torch.Tensor`): |
|
|
A list of tensors that if specified are added to the residuals of transformer blocks. |
|
|
joint_attention_kwargs (`dict`, *optional*): |
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
|
`self.processor` in |
|
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
|
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain |
|
|
tuple. |
|
|
|
|
|
Returns: |
|
|
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a |
|
|
`tuple` where the first element is the sample tensor. |
|
|
""" |
|
|
if joint_attention_kwargs is not None: |
|
|
joint_attention_kwargs = joint_attention_kwargs.copy() |
|
|
lora_scale = joint_attention_kwargs.pop("scale", 1.0) |
|
|
else: |
|
|
lora_scale = 1.0 |
|
|
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
|
|
scale_lora_layers(self, lora_scale) |
|
|
else: |
|
|
if ( |
|
|
joint_attention_kwargs is not None |
|
|
and joint_attention_kwargs.get("scale", None) is not None |
|
|
): |
|
|
logger.warning( |
|
|
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." |
|
|
) |
|
|
hidden_states = self.x_embedder(hidden_states) |
|
|
|
|
|
|
|
|
hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond) |
|
|
|
|
|
timestep = timestep.to(hidden_states.dtype) * 1000 |
|
|
if guidance is not None: |
|
|
guidance = guidance.to(hidden_states.dtype) * 1000 |
|
|
else: |
|
|
guidance = None |
|
|
temb = ( |
|
|
self.time_text_embed(timestep, pooled_projections) |
|
|
if guidance is None |
|
|
else self.time_text_embed(timestep, guidance, pooled_projections) |
|
|
) |
|
|
encoder_hidden_states = self.context_embedder(encoder_hidden_states) |
|
|
|
|
|
txt_ids = txt_ids.expand(img_ids.size(0), -1, -1) |
|
|
ids = torch.cat((txt_ids, img_ids), dim=1) |
|
|
image_rotary_emb = self.pos_embed(ids[0]) |
|
|
|
|
|
|
|
|
block_samples = () |
|
|
for _, block in enumerate(self.transformer_blocks): |
|
|
if self.training and self.gradient_checkpointing: |
|
|
|
|
|
def create_custom_forward(module, return_dict=None): |
|
|
def custom_forward(*inputs): |
|
|
if return_dict is not None: |
|
|
return module(*inputs, return_dict=return_dict) |
|
|
else: |
|
|
return module(*inputs) |
|
|
|
|
|
return custom_forward |
|
|
|
|
|
ckpt_kwargs: Dict[str, Any] = ( |
|
|
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
|
) |
|
|
( |
|
|
encoder_hidden_states, |
|
|
hidden_states, |
|
|
) = torch.utils.checkpoint.checkpoint( |
|
|
create_custom_forward(block), |
|
|
hidden_states, |
|
|
encoder_hidden_states, |
|
|
temb, |
|
|
image_rotary_emb, |
|
|
**ckpt_kwargs, |
|
|
) |
|
|
|
|
|
else: |
|
|
encoder_hidden_states, hidden_states = block( |
|
|
hidden_states=hidden_states, |
|
|
encoder_hidden_states=encoder_hidden_states, |
|
|
temb=temb, |
|
|
image_rotary_emb=image_rotary_emb, |
|
|
) |
|
|
block_samples = block_samples + (hidden_states,) |
|
|
|
|
|
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) |
|
|
|
|
|
single_block_samples = () |
|
|
for _, block in enumerate(self.single_transformer_blocks): |
|
|
if self.training and self.gradient_checkpointing: |
|
|
|
|
|
def create_custom_forward(module, return_dict=None): |
|
|
def custom_forward(*inputs): |
|
|
if return_dict is not None: |
|
|
return module(*inputs, return_dict=return_dict) |
|
|
else: |
|
|
return module(*inputs) |
|
|
|
|
|
return custom_forward |
|
|
|
|
|
ckpt_kwargs: Dict[str, Any] = ( |
|
|
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
|
) |
|
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
|
create_custom_forward(block), |
|
|
hidden_states, |
|
|
temb, |
|
|
image_rotary_emb, |
|
|
**ckpt_kwargs, |
|
|
) |
|
|
|
|
|
else: |
|
|
hidden_states = block( |
|
|
hidden_states=hidden_states, |
|
|
temb=temb, |
|
|
image_rotary_emb=image_rotary_emb, |
|
|
) |
|
|
single_block_samples = single_block_samples + ( |
|
|
hidden_states[:, encoder_hidden_states.shape[1] :], |
|
|
) |
|
|
|
|
|
|
|
|
controlnet_block_samples = () |
|
|
for block_sample, controlnet_block in zip( |
|
|
block_samples, self.controlnet_blocks |
|
|
): |
|
|
block_sample = controlnet_block(block_sample) |
|
|
controlnet_block_samples = controlnet_block_samples + (block_sample,) |
|
|
|
|
|
controlnet_single_block_samples = () |
|
|
for single_block_sample, controlnet_block in zip( |
|
|
single_block_samples, self.controlnet_single_blocks |
|
|
): |
|
|
single_block_sample = controlnet_block(single_block_sample) |
|
|
controlnet_single_block_samples = controlnet_single_block_samples + ( |
|
|
single_block_sample, |
|
|
) |
|
|
|
|
|
|
|
|
controlnet_block_samples = [ |
|
|
sample * conditioning_scale for sample in controlnet_block_samples |
|
|
] |
|
|
controlnet_single_block_samples = [ |
|
|
sample * conditioning_scale for sample in controlnet_single_block_samples |
|
|
] |
|
|
|
|
|
|
|
|
controlnet_block_samples = ( |
|
|
None if len(controlnet_block_samples) == 0 else controlnet_block_samples |
|
|
) |
|
|
controlnet_single_block_samples = ( |
|
|
None |
|
|
if len(controlnet_single_block_samples) == 0 |
|
|
else controlnet_single_block_samples |
|
|
) |
|
|
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
|
|
unscale_lora_layers(self, lora_scale) |
|
|
|
|
|
if not return_dict: |
|
|
return (controlnet_block_samples, controlnet_single_block_samples) |
|
|
|
|
|
return FluxControlNetOutput( |
|
|
controlnet_block_samples=controlnet_block_samples, |
|
|
controlnet_single_block_samples=controlnet_single_block_samples, |
|
|
) |
|
|
|