Spaces:
Runtime error
Runtime error
nananie143
commited on
Commit
·
bdc6438
1
Parent(s):
49575a4
Fixed model loading and agent initialization
Browse files
app.py
CHANGED
|
@@ -16,7 +16,7 @@ import networkx as nx
|
|
| 16 |
from langchain.prompts import PromptTemplate
|
| 17 |
import torch
|
| 18 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 19 |
-
from
|
| 20 |
from langchain.agents import initialize_agent, Tool
|
| 21 |
import subprocess
|
| 22 |
import asyncio
|
|
@@ -26,33 +26,19 @@ logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(
|
|
| 26 |
logger = logging.getLogger(__name__)
|
| 27 |
|
| 28 |
# Load the LLM and tokenizer
|
| 29 |
-
MODEL_NAME = "unit-mesh/autodev-coder-deepseek-6.7b-finetunes"
|
| 30 |
-
|
| 31 |
def load_model():
|
|
|
|
| 32 |
try:
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1024**3 # Convert to GB
|
| 39 |
-
if gpu_memory < 8: # If less than 8GB available
|
| 40 |
-
logger.warning("Limited GPU memory available. Using CPU instead.")
|
| 41 |
-
device = "cpu"
|
| 42 |
-
else:
|
| 43 |
-
device = "cpu"
|
| 44 |
-
logger.info("No GPU detected. Using CPU.")
|
| 45 |
|
| 46 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 47 |
-
MODEL_NAME,
|
| 48 |
-
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
| 49 |
-
device_map="auto" if device == "cuda" else None,
|
| 50 |
-
low_cpu_mem_usage=True
|
| 51 |
-
)
|
| 52 |
return tokenizer, model
|
| 53 |
except Exception as e:
|
| 54 |
logger.error(f"Failed to load model: {str(e)}")
|
| 55 |
-
raise
|
| 56 |
|
| 57 |
# Initialize models lazily
|
| 58 |
tokenizer = None
|
|
@@ -61,44 +47,54 @@ hf_pipeline = None
|
|
| 61 |
llm = None
|
| 62 |
|
| 63 |
def get_llm():
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
model=
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
-
# Lazy initialization of agents
|
| 78 |
def get_agent(agent_type):
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
# Enhanced prompt templates with more specific instructions
|
| 104 |
ui_designer_prompt = PromptTemplate(
|
|
|
|
| 16 |
from langchain.prompts import PromptTemplate
|
| 17 |
import torch
|
| 18 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 19 |
+
from langchain.llms import HuggingFacePipeline
|
| 20 |
from langchain.agents import initialize_agent, Tool
|
| 21 |
import subprocess
|
| 22 |
import asyncio
|
|
|
|
| 26 |
logger = logging.getLogger(__name__)
|
| 27 |
|
| 28 |
# Load the LLM and tokenizer
|
|
|
|
|
|
|
| 29 |
def load_model():
|
| 30 |
+
"""Load the model and tokenizer."""
|
| 31 |
try:
|
| 32 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 33 |
+
|
| 34 |
+
model_name = "gpt2" # Using a smaller model for testing
|
| 35 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 36 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
return tokenizer, model
|
| 39 |
except Exception as e:
|
| 40 |
logger.error(f"Failed to load model: {str(e)}")
|
| 41 |
+
raise
|
| 42 |
|
| 43 |
# Initialize models lazily
|
| 44 |
tokenizer = None
|
|
|
|
| 47 |
llm = None
|
| 48 |
|
| 49 |
def get_llm():
|
| 50 |
+
"""Get or initialize the language model."""
|
| 51 |
+
global llm, tokenizer, model, hf_pipeline
|
| 52 |
+
|
| 53 |
+
try:
|
| 54 |
+
if llm is None:
|
| 55 |
+
tokenizer, model = load_model()
|
| 56 |
+
hf_pipeline = pipeline(
|
| 57 |
+
"text-generation",
|
| 58 |
+
model=model,
|
| 59 |
+
tokenizer=tokenizer,
|
| 60 |
+
max_length=500,
|
| 61 |
+
temperature=0.7,
|
| 62 |
+
)
|
| 63 |
+
llm = HuggingFacePipeline(pipeline=hf_pipeline)
|
| 64 |
+
return llm
|
| 65 |
+
except Exception as e:
|
| 66 |
+
logger.error(f"Failed to get LLM: {str(e)}")
|
| 67 |
+
raise
|
| 68 |
|
|
|
|
| 69 |
def get_agent(agent_type):
|
| 70 |
+
"""Get or initialize an agent with the specified type."""
|
| 71 |
+
try:
|
| 72 |
+
llm = get_llm()
|
| 73 |
+
return initialize_agent(
|
| 74 |
+
tools=[
|
| 75 |
+
Tool(
|
| 76 |
+
name="Code Formatter",
|
| 77 |
+
func=lambda x: subprocess.run(["black", "-"], input=x.encode(), capture_output=True).stdout.decode(),
|
| 78 |
+
description="Formats code using Black.",
|
| 79 |
+
),
|
| 80 |
+
Tool(
|
| 81 |
+
name="API Generator",
|
| 82 |
+
func=lambda x: json.dumps({"endpoints": {"example": "POST - Example endpoint."}}),
|
| 83 |
+
description="Generates API details from code.",
|
| 84 |
+
),
|
| 85 |
+
Tool(
|
| 86 |
+
name="Task Decomposer",
|
| 87 |
+
func=lambda x: json.dumps({"tasks": ["Design UI", "Develop Backend", "Test App", "Deploy App"]}),
|
| 88 |
+
description="Breaks down app requirements into smaller tasks.",
|
| 89 |
+
),
|
| 90 |
+
],
|
| 91 |
+
llm=llm,
|
| 92 |
+
agent="zero-shot-react-description",
|
| 93 |
+
verbose=True,
|
| 94 |
+
)
|
| 95 |
+
except Exception as e:
|
| 96 |
+
logger.error(f"Failed to get agent: {str(e)}")
|
| 97 |
+
raise
|
| 98 |
|
| 99 |
# Enhanced prompt templates with more specific instructions
|
| 100 |
ui_designer_prompt = PromptTemplate(
|