Update cognitive_mapping_probe/orchestrator_seismograph.py
Browse files
cognitive_mapping_probe/orchestrator_seismograph.py
CHANGED
|
@@ -3,10 +3,11 @@ import numpy as np
|
|
| 3 |
import gc
|
| 4 |
from typing import Dict, Any, Optional, List
|
| 5 |
|
| 6 |
-
from .llm_iface import get_or_load_model, LLM
|
| 7 |
from .resonance_seismograph import run_cogitation_loop, run_silent_cogitation_seismic
|
| 8 |
from .concepts import get_concept_vector
|
| 9 |
from .introspection import generate_introspective_report
|
|
|
|
| 10 |
from .utils import dbg
|
| 11 |
|
| 12 |
def run_seismic_analysis(
|
|
@@ -20,53 +21,71 @@ def run_seismic_analysis(
|
|
| 20 |
llm_instance: Optional[LLM] = None,
|
| 21 |
injection_vector_cache: Optional[torch.Tensor] = None
|
| 22 |
) -> Dict[str, Any]:
|
| 23 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 24 |
local_llm_instance = False
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
llm.set_all_seeds(seed)
|
| 32 |
-
|
| 33 |
-
injection_vector = None
|
| 34 |
-
if concept_to_inject and concept_to_inject.strip():
|
| 35 |
-
if injection_vector_cache is not None:
|
| 36 |
-
dbg(f"Using cached injection vector for '{concept_to_inject}'.")
|
| 37 |
-
injection_vector = injection_vector_cache
|
| 38 |
else:
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
verdict += f"\nModulated with **'{concept_to_inject}'** at strength **{injection_strength:.2f}**."
|
| 58 |
-
else:
|
| 59 |
-
stats, verdict = {}, "### ⚠️ Analysis Warning\nNo state changes recorded."
|
| 60 |
|
| 61 |
-
|
| 62 |
|
| 63 |
-
|
| 64 |
-
dbg(f"Releasing locally created model instance for '{model_id}'.")
|
| 65 |
-
del llm, injection_vector
|
| 66 |
-
gc.collect()
|
| 67 |
-
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
| 68 |
|
| 69 |
-
|
|
|
|
|
|
|
| 70 |
|
| 71 |
def run_triangulation_probe(
|
| 72 |
model_id: str,
|
|
@@ -78,62 +97,58 @@ def run_triangulation_probe(
|
|
| 78 |
injection_strength: float = 0.0,
|
| 79 |
llm_instance: Optional[LLM] = None,
|
| 80 |
) -> Dict[str, Any]:
|
| 81 |
-
"""
|
| 82 |
-
Orchestriert ein vollständiges Triangulations-Experiment, jetzt mit optionaler Injektion.
|
| 83 |
-
"""
|
| 84 |
local_llm_instance = False
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
llm.set_all_seeds(seed)
|
| 92 |
-
|
| 93 |
-
injection_vector = None
|
| 94 |
-
if concept_to_inject and concept_to_inject.strip() and injection_strength > 0:
|
| 95 |
-
if concept_to_inject.lower() == "random_noise":
|
| 96 |
-
progress_callback(0.15, desc="Generating random noise vector...")
|
| 97 |
-
hidden_dim = llm.stable_config.hidden_dim
|
| 98 |
-
noise_vec = torch.randn(hidden_dim)
|
| 99 |
-
base_norm = 70.0
|
| 100 |
-
injection_vector = (noise_vec / torch.norm(noise_vec)) * base_norm
|
| 101 |
else:
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
else:
|
| 123 |
-
stats, verdict = {}, "### ⚠️ Triangulation Warning"
|
| 124 |
-
|
| 125 |
-
results = {
|
| 126 |
-
"verdict": verdict, "stats": stats, "state_deltas": state_deltas,
|
| 127 |
-
"introspective_report": report
|
| 128 |
-
}
|
| 129 |
-
|
| 130 |
-
if local_llm_instance:
|
| 131 |
-
dbg(f"Releasing locally created model instance for '{model_id}'.")
|
| 132 |
-
del llm, injection_vector
|
| 133 |
-
gc.collect()
|
| 134 |
-
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
| 135 |
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
def run_causal_surgery_probe(
|
| 139 |
model_id: str,
|
|
@@ -145,117 +160,29 @@ def run_causal_surgery_probe(
|
|
| 145 |
progress_callback,
|
| 146 |
reset_kv_cache_on_patch: bool = False
|
| 147 |
) -> Dict[str, Any]:
|
| 148 |
-
"""
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
progress_callback(0.1, desc=f"Phase 1/3: Recording source state ('{source_prompt_type}')...")
|
| 155 |
-
source_results = run_cogitation_loop(
|
| 156 |
-
llm=llm, prompt_type=source_prompt_type, num_steps=num_steps,
|
| 157 |
-
temperature=0.1, record_states=True
|
| 158 |
-
)
|
| 159 |
-
state_history = source_results["state_history"]
|
| 160 |
-
assert patch_step < len(state_history), f"Patch step {patch_step} is out of bounds."
|
| 161 |
-
patch_state = state_history[patch_step]
|
| 162 |
-
dbg(f"Source state at step {patch_step} recorded with norm {torch.norm(patch_state).item():.2f}.")
|
| 163 |
-
|
| 164 |
-
progress_callback(0.4, desc=f"Phase 2/3: Running patched destination ('{dest_prompt_type}')...")
|
| 165 |
-
patched_run_results = run_cogitation_loop(
|
| 166 |
-
llm=llm, prompt_type=dest_prompt_type, num_steps=num_steps,
|
| 167 |
-
temperature=0.1, patch_step=patch_step, patch_state_source=patch_state,
|
| 168 |
-
reset_kv_cache_on_patch=reset_kv_cache_on_patch
|
| 169 |
-
)
|
| 170 |
-
|
| 171 |
-
progress_callback(0.8, desc="Phase 3/3: Generating introspective report...")
|
| 172 |
-
report = generate_introspective_report(
|
| 173 |
-
llm=llm, context_prompt_type=dest_prompt_type,
|
| 174 |
-
introspection_prompt_type="describe_dynamics_structured", num_steps=num_steps
|
| 175 |
-
)
|
| 176 |
-
|
| 177 |
-
progress_callback(0.95, desc="Analyzing...")
|
| 178 |
-
deltas_np = np.array(patched_run_results["state_deltas"])
|
| 179 |
-
stats = { "mean_delta": float(np.mean(deltas_np)), "std_delta": float(np.std(deltas_np)), "max_delta": float(np.max(deltas_np)) }
|
| 180 |
-
|
| 181 |
-
results = {
|
| 182 |
-
"verdict": "### ✅ Causal Surgery Probe Complete",
|
| 183 |
-
"stats": stats,
|
| 184 |
-
"state_deltas": patched_run_results["state_deltas"],
|
| 185 |
-
"introspective_report": report,
|
| 186 |
-
"patch_info": {
|
| 187 |
-
"source_prompt": source_prompt_type,
|
| 188 |
-
"dest_prompt": dest_prompt_type,
|
| 189 |
-
"patch_step": patch_step,
|
| 190 |
-
"kv_cache_reset": reset_kv_cache_on_patch
|
| 191 |
-
}
|
| 192 |
-
}
|
| 193 |
-
|
| 194 |
-
dbg(f"Releasing model instance for '{model_id}'.")
|
| 195 |
-
del llm, state_history, patch_state
|
| 196 |
-
gc.collect()
|
| 197 |
-
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
| 198 |
-
|
| 199 |
-
return results
|
| 200 |
-
|
| 201 |
-
def run_act_titration_probe(
|
| 202 |
-
model_id: str,
|
| 203 |
-
source_prompt_type: str,
|
| 204 |
-
dest_prompt_type: str,
|
| 205 |
-
patch_steps: List[int],
|
| 206 |
-
seed: int,
|
| 207 |
-
num_steps: int,
|
| 208 |
-
progress_callback,
|
| 209 |
-
) -> Dict[str, Any]:
|
| 210 |
-
"""
|
| 211 |
-
Führt eine Serie von "Causal Surgery"-Experimenten durch, um den "Attractor Capture Time"
|
| 212 |
-
durch Titration des `patch_step` zu finden.
|
| 213 |
-
"""
|
| 214 |
-
progress_callback(0.0, desc=f"Loading model '{model_id}'...")
|
| 215 |
-
llm = get_or_load_model(model_id, seed)
|
| 216 |
-
|
| 217 |
-
progress_callback(0.05, desc=f"Recording full source state history ('{source_prompt_type}')...")
|
| 218 |
-
source_results = run_cogitation_loop(
|
| 219 |
-
llm=llm, prompt_type=source_prompt_type, num_steps=num_steps,
|
| 220 |
-
temperature=0.1, record_states=True
|
| 221 |
-
)
|
| 222 |
-
state_history = source_results["state_history"]
|
| 223 |
-
dbg(f"Full source state history ({len(state_history)} steps) recorded.")
|
| 224 |
-
|
| 225 |
-
titration_results = []
|
| 226 |
-
total_steps = len(patch_steps)
|
| 227 |
-
for i, step in enumerate(patch_steps):
|
| 228 |
-
progress_callback(0.15 + (i / total_steps) * 0.8, desc=f"Titrating patch at step {step}/{num_steps}")
|
| 229 |
-
|
| 230 |
-
if step >= len(state_history):
|
| 231 |
-
dbg(f"Skipping patch step {step} as it is out of bounds for history of length {len(state_history)}.")
|
| 232 |
-
continue
|
| 233 |
|
| 234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
|
|
|
|
| 236 |
patched_run_results = run_cogitation_loop(
|
| 237 |
llm=llm, prompt_type=dest_prompt_type, num_steps=num_steps,
|
| 238 |
-
temperature=0.1, patch_step=
|
|
|
|
| 239 |
)
|
| 240 |
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
post_patch_deltas = deltas[step + buffer:]
|
| 245 |
-
post_patch_mean_delta = np.mean(post_patch_deltas) if post_patch_deltas else 0.0
|
| 246 |
-
|
| 247 |
-
titration_results.append({
|
| 248 |
-
"patch_step": step,
|
| 249 |
-
"post_patch_mean_delta": float(post_patch_mean_delta),
|
| 250 |
-
"full_mean_delta": float(np.mean(deltas)),
|
| 251 |
-
})
|
| 252 |
-
|
| 253 |
-
dbg(f"Releasing model instance for '{model_id}'.")
|
| 254 |
-
del llm, state_history
|
| 255 |
-
gc.collect()
|
| 256 |
-
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
| 257 |
-
|
| 258 |
-
return {
|
| 259 |
-
"verdict": "### ✅ ACT Titration Complete",
|
| 260 |
-
"titration_data": titration_results
|
| 261 |
-
}
|
|
|
|
| 3 |
import gc
|
| 4 |
from typing import Dict, Any, Optional, List
|
| 5 |
|
| 6 |
+
from .llm_iface import get_or_load_model, LLM, release_model
|
| 7 |
from .resonance_seismograph import run_cogitation_loop, run_silent_cogitation_seismic
|
| 8 |
from .concepts import get_concept_vector
|
| 9 |
from .introspection import generate_introspective_report
|
| 10 |
+
from .signal_analysis import analyze_cognitive_signal, get_power_spectrum_for_plotting
|
| 11 |
from .utils import dbg
|
| 12 |
|
| 13 |
def run_seismic_analysis(
|
|
|
|
| 21 |
llm_instance: Optional[LLM] = None,
|
| 22 |
injection_vector_cache: Optional[torch.Tensor] = None
|
| 23 |
) -> Dict[str, Any]:
|
| 24 |
+
"""
|
| 25 |
+
Orchestriert eine einzelne seismische Analyse und integriert nun standardmäßig
|
| 26 |
+
die fortgeschrittene Signal-Analyse.
|
| 27 |
+
"""
|
| 28 |
local_llm_instance = False
|
| 29 |
+
llm = None
|
| 30 |
+
try:
|
| 31 |
+
if llm_instance is None:
|
| 32 |
+
progress_callback(0.0, desc=f"Loading model '{model_id}'...")
|
| 33 |
+
llm = get_or_load_model(model_id, seed)
|
| 34 |
+
local_llm_instance = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
else:
|
| 36 |
+
llm = llm_instance
|
| 37 |
+
llm.set_all_seeds(seed)
|
| 38 |
+
|
| 39 |
+
injection_vector = None
|
| 40 |
+
if concept_to_inject and concept_to_inject.strip():
|
| 41 |
+
if injection_vector_cache is not None:
|
| 42 |
+
dbg(f"Using cached injection vector for '{concept_to_inject}'.")
|
| 43 |
+
injection_vector = injection_vector_cache
|
| 44 |
+
else:
|
| 45 |
+
progress_callback(0.2, desc=f"Vectorizing '{concept_to_inject}'...")
|
| 46 |
+
injection_vector = get_concept_vector(llm, concept_to_inject.strip())
|
| 47 |
+
|
| 48 |
+
progress_callback(0.3, desc=f"Recording dynamics for '{prompt_type}'...")
|
| 49 |
+
|
| 50 |
+
state_deltas = run_silent_cogitation_seismic(
|
| 51 |
+
llm=llm, prompt_type=prompt_type,
|
| 52 |
+
num_steps=num_steps, temperature=0.1,
|
| 53 |
+
injection_vector=injection_vector, injection_strength=injection_strength
|
| 54 |
+
)
|
| 55 |
|
| 56 |
+
progress_callback(0.9, desc="Analyzing...")
|
| 57 |
+
|
| 58 |
+
stats = {}
|
| 59 |
+
results = {}
|
| 60 |
+
verdict = "### ⚠️ Analysis Warning\nNo state changes recorded."
|
| 61 |
|
| 62 |
+
if state_deltas:
|
| 63 |
+
deltas_np = np.array(state_deltas)
|
| 64 |
+
stats = {
|
| 65 |
+
"mean_delta": float(np.mean(deltas_np)),
|
| 66 |
+
"std_delta": float(np.std(deltas_np)),
|
| 67 |
+
"max_delta": float(np.max(deltas_np)),
|
| 68 |
+
"min_delta": float(np.min(deltas_np)),
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
signal_metrics = analyze_cognitive_signal(deltas_np)
|
| 72 |
+
stats.update(signal_metrics)
|
| 73 |
|
| 74 |
+
freqs, power = get_power_spectrum_for_plotting(deltas_np)
|
| 75 |
|
| 76 |
+
verdict = f"### ✅ Seismic Analysis Complete\nRecorded {len(deltas_np)} steps for '{prompt_type}'."
|
| 77 |
+
if injection_vector is not None:
|
| 78 |
+
verdict += f"\nModulated with **'{concept_to_inject}'** at strength **{injection_strength:.2f}**."
|
| 79 |
+
|
| 80 |
+
results["power_spectrum"] = {"frequencies": freqs.tolist(), "power": power.tolist()}
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
+
results.update({ "verdict": verdict, "stats": stats, "state_deltas": state_deltas })
|
| 83 |
|
| 84 |
+
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
+
finally:
|
| 87 |
+
if local_llm_instance and llm is not None:
|
| 88 |
+
release_model(llm)
|
| 89 |
|
| 90 |
def run_triangulation_probe(
|
| 91 |
model_id: str,
|
|
|
|
| 97 |
injection_strength: float = 0.0,
|
| 98 |
llm_instance: Optional[LLM] = None,
|
| 99 |
) -> Dict[str, Any]:
|
| 100 |
+
"""Orchestriert ein vollständiges Triangulations-Experiment."""
|
|
|
|
|
|
|
| 101 |
local_llm_instance = False
|
| 102 |
+
llm = None
|
| 103 |
+
try:
|
| 104 |
+
if llm_instance is None:
|
| 105 |
+
progress_callback(0.0, desc=f"Loading model '{model_id}'...")
|
| 106 |
+
llm = get_or_load_model(model_id, seed)
|
| 107 |
+
local_llm_instance = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
else:
|
| 109 |
+
llm = llm_instance
|
| 110 |
+
llm.set_all_seeds(seed)
|
| 111 |
+
|
| 112 |
+
injection_vector = None
|
| 113 |
+
if concept_to_inject and concept_to_inject.strip() and injection_strength > 0:
|
| 114 |
+
if concept_to_inject.lower() == "random_noise":
|
| 115 |
+
progress_callback(0.15, desc="Generating random noise vector...")
|
| 116 |
+
hidden_dim = llm.stable_config.hidden_dim
|
| 117 |
+
noise_vec = torch.randn(hidden_dim)
|
| 118 |
+
base_norm = 70.0
|
| 119 |
+
injection_vector = (noise_vec / torch.norm(noise_vec)) * base_norm
|
| 120 |
+
else:
|
| 121 |
+
progress_callback(0.15, desc=f"Vectorizing '{concept_to_inject}'...")
|
| 122 |
+
injection_vector = get_concept_vector(llm, concept_to_inject.strip())
|
| 123 |
+
|
| 124 |
+
progress_callback(0.3, desc=f"Phase 1/2: Recording dynamics for '{prompt_type}'...")
|
| 125 |
+
state_deltas = run_silent_cogitation_seismic(
|
| 126 |
+
llm=llm, prompt_type=prompt_type, num_steps=num_steps, temperature=0.1,
|
| 127 |
+
injection_vector=injection_vector, injection_strength=injection_strength
|
| 128 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
+
progress_callback(0.7, desc="Phase 2/2: Generating introspective report...")
|
| 131 |
+
report = generate_introspective_report(
|
| 132 |
+
llm=llm, context_prompt_type=prompt_type,
|
| 133 |
+
introspection_prompt_type="describe_dynamics_structured", num_steps=num_steps
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
progress_callback(0.9, desc="Analyzing...")
|
| 137 |
+
stats = {}
|
| 138 |
+
verdict = "### ⚠️ Triangulation Warning"
|
| 139 |
+
if state_deltas:
|
| 140 |
+
deltas_np = np.array(state_deltas)
|
| 141 |
+
stats = { "mean_delta": float(np.mean(deltas_np)), "std_delta": float(np.std(deltas_np)), "max_delta": float(np.max(deltas_np)) }
|
| 142 |
+
verdict = "### ✅ Triangulation Probe Complete"
|
| 143 |
+
|
| 144 |
+
results = {
|
| 145 |
+
"verdict": verdict, "stats": stats, "state_deltas": state_deltas,
|
| 146 |
+
"introspective_report": report
|
| 147 |
+
}
|
| 148 |
+
return results
|
| 149 |
+
finally:
|
| 150 |
+
if local_llm_instance and llm is not None:
|
| 151 |
+
release_model(llm)
|
| 152 |
|
| 153 |
def run_causal_surgery_probe(
|
| 154 |
model_id: str,
|
|
|
|
| 160 |
progress_callback,
|
| 161 |
reset_kv_cache_on_patch: bool = False
|
| 162 |
) -> Dict[str, Any]:
|
| 163 |
+
"""Orchestriert ein "Activation Patching"-Experiment."""
|
| 164 |
+
llm = None
|
| 165 |
+
try:
|
| 166 |
+
progress_callback(0.0, desc=f"Loading model '{model_id}'...")
|
| 167 |
+
llm = get_or_load_model(model_id, seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
+
progress_callback(0.1, desc=f"Phase 1/3: Recording source state ('{source_prompt_type}')...")
|
| 170 |
+
source_results = run_cogitation_loop(
|
| 171 |
+
llm=llm, prompt_type=source_prompt_type, num_steps=num_steps,
|
| 172 |
+
temperature=0.1, record_states=True
|
| 173 |
+
)
|
| 174 |
+
state_history = source_results["state_history"]
|
| 175 |
+
assert patch_step < len(state_history), f"Patch step {patch_step} is out of bounds."
|
| 176 |
+
patch_state = state_history[patch_step]
|
| 177 |
+
dbg(f"Source state at step {patch_step} recorded with norm {torch.norm(patch_state).item():.2f}.")
|
| 178 |
|
| 179 |
+
progress_callback(0.4, desc=f"Phase 2/3: Running patched destination ('{dest_prompt_type}')...")
|
| 180 |
patched_run_results = run_cogitation_loop(
|
| 181 |
llm=llm, prompt_type=dest_prompt_type, num_steps=num_steps,
|
| 182 |
+
temperature=0.1, patch_step=patch_step, patch_state_source=patch_state,
|
| 183 |
+
reset_kv_cache_on_patch=reset_kv_cache_on_patch
|
| 184 |
)
|
| 185 |
|
| 186 |
+
progress_callback(0.8, desc="Phase 3/3: Generating introspective report...")
|
| 187 |
+
report = generate_introspective_report(
|
| 188 |
+
llm=llm,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|