Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,68 +1,177 @@
|
|
| 1 |
import json
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
| 3 |
import gradio as gr
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
qg_model = AutoModelForSeq2SeqLM.from_pretrained("valhalla/t5-
|
| 8 |
-
qg_tokenizer =
|
| 9 |
-
qg_pipeline = pipeline(
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
if len(
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
else:
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
seen.add(key)
|
| 56 |
-
return json.dumps(unique, indent=2, ensure_ascii=False)
|
| 57 |
-
|
| 58 |
-
# Gradio interface
|
| 59 |
def main():
|
| 60 |
with gr.Blocks() as demo:
|
| 61 |
-
gr.Markdown("
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
demo.launch()
|
| 67 |
|
| 68 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import json
|
| 2 |
+
import re
|
| 3 |
+
import os
|
| 4 |
+
import spacy
|
| 5 |
+
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
|
| 6 |
import gradio as gr
|
| 7 |
+
from huggingface_hub import Repository
|
| 8 |
+
from datetime import datetime
|
| 9 |
|
| 10 |
+
nlp = spacy.load("en_core_web_sm")
|
| 11 |
+
|
| 12 |
+
qg_model = AutoModelForSeq2SeqLM.from_pretrained("valhalla/t5-base-qa-qg-hl")
|
| 13 |
+
qg_tokenizer = AutoTokenizer.from_pretrained("valhalla/t5-base-qa-qg-hl", use_fast=True)
|
| 14 |
+
qg_pipeline = pipeline("text2text-generation", model=qg_model, tokenizer=qg_tokenizer)
|
| 15 |
+
|
| 16 |
+
def extract_paragraph_facts(raw_text):
|
| 17 |
+
return [p.strip() for p in raw_text.strip().split("\n\n") if p.strip()]
|
| 18 |
+
|
| 19 |
+
def extract_noun_phrases(text):
|
| 20 |
+
doc = nlp(text)
|
| 21 |
+
return [np.text for np in doc.noun_chunks]
|
| 22 |
+
|
| 23 |
+
def auto_highlight_noun_phrase(text):
|
| 24 |
+
doc = nlp(text)
|
| 25 |
+
noun_phrases = sorted(doc.noun_chunks, key=lambda np: len(np.text), reverse=True)
|
| 26 |
+
for np in noun_phrases:
|
| 27 |
+
if len(np.text.split()) > 1 or np.root.pos_ == "NOUN":
|
| 28 |
+
return np.text
|
| 29 |
+
return text
|
| 30 |
+
|
| 31 |
+
def highlight_selected_phrase(fact, selected_np):
|
| 32 |
+
return fact.replace(selected_np, f"<hl>{selected_np}<hl>", 1)
|
| 33 |
+
|
| 34 |
+
def generate_single_qna(fact, noun_phrase, min_len, max_len, temperature, top_k, top_p):
|
| 35 |
+
hl_fact = highlight_selected_phrase(fact, noun_phrase)
|
| 36 |
+
try:
|
| 37 |
+
prompt = f"generate question: {hl_fact}"
|
| 38 |
+
output = qg_pipeline(
|
| 39 |
+
prompt,
|
| 40 |
+
min_length=min_len,
|
| 41 |
+
max_length=max_len,
|
| 42 |
+
temperature=temperature,
|
| 43 |
+
top_k=top_k,
|
| 44 |
+
top_p=top_p,
|
| 45 |
+
do_sample=True
|
| 46 |
+
)[0]
|
| 47 |
+
question = output.get("generated_text", "").strip()
|
| 48 |
+
if not question.endswith("?"):
|
| 49 |
+
question += "?"
|
| 50 |
+
except Exception as e:
|
| 51 |
+
question = f"Error generating question: {str(e)}"
|
| 52 |
+
|
| 53 |
+
return {"question": question, "answer": fact}
|
| 54 |
+
|
| 55 |
+
def generate_qna_all(input_text, selected_fact, selected_np, min_len, max_len, temperature, top_k, top_p):
|
| 56 |
+
facts = extract_paragraph_facts(input_text)
|
| 57 |
+
results = []
|
| 58 |
+
|
| 59 |
+
if selected_fact:
|
| 60 |
+
noun_phrase = selected_np if selected_np else auto_highlight_noun_phrase(selected_fact)
|
| 61 |
+
result = generate_single_qna(selected_fact, noun_phrase, min_len, max_len, temperature, top_k, top_p)
|
| 62 |
+
results.append(result)
|
| 63 |
+
else:
|
| 64 |
+
for fact in facts:
|
| 65 |
+
noun_phrase = auto_highlight_noun_phrase(fact)
|
| 66 |
+
result = generate_single_qna(fact, noun_phrase, min_len, max_len, temperature, top_k, top_p)
|
| 67 |
+
results.append(result)
|
| 68 |
+
|
| 69 |
+
return json.dumps(results, indent=2, ensure_ascii=False)
|
| 70 |
+
|
| 71 |
+
def save_json_to_dataset(json_str):
|
| 72 |
+
try:
|
| 73 |
+
hf_token = os.environ.get("QandA_Generator")
|
| 74 |
+
if not hf_token:
|
| 75 |
+
return "❌ HF_TOKEN not found in environment."
|
| 76 |
+
|
| 77 |
+
repo_id = "University_Inquiries_AI_Chatbot"
|
| 78 |
+
dataset_file = "dataset.json"
|
| 79 |
+
local_dir = "hf_repo"
|
| 80 |
+
|
| 81 |
+
repo = Repository(
|
| 82 |
+
local_dir=local_dir,
|
| 83 |
+
clone_from=f"datasets/{repo_id}",
|
| 84 |
+
use_auth_token=hf_token
|
| 85 |
+
)
|
| 86 |
+
repo.git_pull()
|
| 87 |
+
|
| 88 |
+
full_path = os.path.join(local_dir, dataset_file)
|
| 89 |
+
|
| 90 |
+
if os.path.exists(full_path):
|
| 91 |
+
with open(full_path, "r", encoding="utf-8") as f:
|
| 92 |
+
existing_data = json.load(f)
|
| 93 |
else:
|
| 94 |
+
existing_data = []
|
| 95 |
+
|
| 96 |
+
new_data = json.loads(json_str)
|
| 97 |
+
|
| 98 |
+
now = datetime.now()
|
| 99 |
+
for entry in new_data:
|
| 100 |
+
entry["month"] = now.strftime("%B")
|
| 101 |
+
entry["year"] = now.year
|
| 102 |
+
|
| 103 |
+
updated_data = existing_data + new_data
|
| 104 |
+
|
| 105 |
+
with open(full_path, "w", encoding="utf-8") as f:
|
| 106 |
+
json.dump(updated_data, f, indent=2, ensure_ascii=False)
|
| 107 |
+
|
| 108 |
+
repo.push_to_hub(commit_message="📥 Add new Q&A with timestamp")
|
| 109 |
+
|
| 110 |
+
return "✅ Data with timestamp successfully pushed to HF dataset!"
|
| 111 |
+
except Exception as e:
|
| 112 |
+
return f"❌ Error: {str(e)}"
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def on_extract_facts(text):
|
| 116 |
+
facts = extract_paragraph_facts(text)
|
| 117 |
+
default_fact = facts[0] if facts else None
|
| 118 |
+
return gr.update(choices=facts, value=default_fact), gr.update(choices=[], value=None)
|
| 119 |
+
|
| 120 |
+
def on_select_fact(fact):
|
| 121 |
+
noun_phrases = extract_noun_phrases(fact)
|
| 122 |
+
return gr.update(choices=noun_phrases, value=noun_phrases[0] if noun_phrases else None)
|
| 123 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
def main():
|
| 125 |
with gr.Blocks() as demo:
|
| 126 |
+
gr.Markdown("## Paragraph-to-Question Generator (Auto Q&A for HF Dataset)")
|
| 127 |
+
|
| 128 |
+
input_text = gr.Textbox(lines=10, label="Enter Data (Seperated by paragraph per question)")
|
| 129 |
+
|
| 130 |
+
with gr.Accordion("⚙️ Customize Question Generation", open=False):
|
| 131 |
+
extract_btn = gr.Button("Extract & Customize")
|
| 132 |
+
fact_dropdown = gr.Dropdown(label="Select a Fact", interactive=True)
|
| 133 |
+
np_dropdown = gr.Dropdown(label="Select Noun Phrase to Highlight (optional)", interactive=True)
|
| 134 |
+
|
| 135 |
+
extract_btn.click(fn=on_extract_facts, inputs=input_text, outputs=[fact_dropdown, np_dropdown])
|
| 136 |
+
fact_dropdown.change(fn=on_select_fact, inputs=fact_dropdown, outputs=np_dropdown)
|
| 137 |
+
|
| 138 |
+
gr.Markdown("🔽 **Min Length**: Minimum number of tokens in the generated question.")
|
| 139 |
+
min_len = gr.Slider(5, 50, value=10, step=1, label="Min Length")
|
| 140 |
+
|
| 141 |
+
gr.Markdown("🔼 **Max Length**: Maximum number of tokens in the generated question.")
|
| 142 |
+
max_len = gr.Slider(20, 100, value=64, step=1, label="Max Length")
|
| 143 |
+
|
| 144 |
+
gr.Markdown("🌡️ **Temperature**: Controls randomness. Lower = more predictable, higher = more creative.")
|
| 145 |
+
temperature = gr.Slider(0.1, 1.5, value=1.0, step=0.1, label="Temperature")
|
| 146 |
+
|
| 147 |
+
gr.Markdown("🎯 **Top-k Sampling**: Limits sampling to the top-k most likely words.")
|
| 148 |
+
top_k = gr.Slider(0, 100, value=50, step=1, label="Top-k")
|
| 149 |
+
|
| 150 |
+
gr.Markdown("🎲 **Top-p (Nucleus Sampling)**: Selects from the smallest set of words with a cumulative probability > p.")
|
| 151 |
+
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
|
| 152 |
+
|
| 153 |
+
gr.Markdown("✏️ You can manually edit the generated JSON here or paste your own in the same format.")
|
| 154 |
+
output_json = gr.Textbox(
|
| 155 |
+
lines=14,
|
| 156 |
+
label="Q&A JSON",
|
| 157 |
+
interactive=True,
|
| 158 |
+
placeholder='{\n"question": "Your question?",\n"answer": "Your answer."\n},'
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
with gr.Row():
|
| 163 |
+
generate_btn = gr.Button("Generate Q&A")
|
| 164 |
+
send_btn = gr.Button("📤 Send to Dataset")
|
| 165 |
+
|
| 166 |
+
generate_btn.click(
|
| 167 |
+
fn=generate_qna_all,
|
| 168 |
+
inputs=[input_text, fact_dropdown, np_dropdown, min_len, max_len, temperature, top_k, top_p],
|
| 169 |
+
outputs=output_json
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
send_status = gr.Textbox(label="Save Status", interactive=False)
|
| 173 |
+
send_btn.click(fn=save_json_to_dataset, inputs=output_json, outputs=send_status)
|
| 174 |
+
|
| 175 |
demo.launch()
|
| 176 |
|
| 177 |
if __name__ == "__main__":
|