Spaces:
Sleeping
Sleeping
app.py
Browse files
app.py
CHANGED
|
@@ -1,26 +1,25 @@
|
|
| 1 |
import re
|
| 2 |
-
import math
|
| 3 |
import gradio as gr
|
| 4 |
import torch
|
| 5 |
-
from transformers import PreTrainedTokenizerFast,
|
| 6 |
|
| 7 |
-
# β
|
| 8 |
-
MODEL_NAME = "
|
| 9 |
|
| 10 |
tokenizer = PreTrainedTokenizerFast.from_pretrained(MODEL_NAME)
|
| 11 |
-
model =
|
| 12 |
|
| 13 |
# CPU λμ μμν μ μ©
|
| 14 |
try:
|
| 15 |
model = torch.quantization.quantize_dynamic(
|
| 16 |
model, {torch.nn.Linear}, dtype=torch.qint8
|
| 17 |
)
|
| 18 |
-
except
|
| 19 |
pass
|
| 20 |
|
| 21 |
model.eval()
|
| 22 |
|
| 23 |
-
# ===== μ νΈ
|
| 24 |
def normalize_text(text: str) -> str:
|
| 25 |
return re.sub(r"\s+", " ", text).strip()
|
| 26 |
|
|
@@ -55,17 +54,16 @@ def chunk_by_tokens(sentences, max_tokens=900):
|
|
| 55 |
chunks.append(" ".join(cur))
|
| 56 |
return chunks
|
| 57 |
|
| 58 |
-
# ===== μμ½
|
| 59 |
def summarize_raw(text: str, min_len: int, max_len: int) -> str:
|
| 60 |
-
|
| 61 |
with torch.no_grad():
|
| 62 |
summary_ids = model.generate(
|
| 63 |
-
|
| 64 |
num_beams=4,
|
| 65 |
min_length=min_len,
|
| 66 |
max_length=max_len,
|
| 67 |
-
early_stopping=True
|
| 68 |
-
no_repeat_ngram_size=3
|
| 69 |
)
|
| 70 |
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 71 |
|
|
@@ -77,8 +75,8 @@ def apply_style_prompt(text: str, mode: str, final: bool=False) -> str:
|
|
| 77 |
else:
|
| 78 |
inst = "λ€μ νκ΅μ΄ ν
μ€νΈλ₯Ό bullet ννλ‘ ν΅μ¬λ§ μμ½νμΈμ."
|
| 79 |
if final:
|
| 80 |
-
inst += "
|
| 81 |
-
return f"{inst}\n\n
|
| 82 |
|
| 83 |
def postprocess(summary: str, mode: str) -> str:
|
| 84 |
s = summary.strip()
|
|
@@ -124,7 +122,7 @@ def ui_summarize(text, target_len, style):
|
|
| 124 |
return summarize_long(text, int(target_len), mode)
|
| 125 |
|
| 126 |
with gr.Blocks() as demo:
|
| 127 |
-
gr.Markdown("## π
|
| 128 |
with gr.Row():
|
| 129 |
with gr.Column():
|
| 130 |
input_text = gr.Textbox(label="μλ¬Έ μ
λ ₯", lines=16)
|
|
|
|
| 1 |
import re
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
+
from transformers import PreTrainedTokenizerFast, T5ForConditionalGeneration
|
| 5 |
|
| 6 |
+
# β
KoT5 μμ½ λͺ¨λΈ
|
| 7 |
+
MODEL_NAME = "psyche/KoT5-summarization"
|
| 8 |
|
| 9 |
tokenizer = PreTrainedTokenizerFast.from_pretrained(MODEL_NAME)
|
| 10 |
+
model = T5ForConditionalGeneration.from_pretrained(MODEL_NAME)
|
| 11 |
|
| 12 |
# CPU λμ μμν μ μ©
|
| 13 |
try:
|
| 14 |
model = torch.quantization.quantize_dynamic(
|
| 15 |
model, {torch.nn.Linear}, dtype=torch.qint8
|
| 16 |
)
|
| 17 |
+
except:
|
| 18 |
pass
|
| 19 |
|
| 20 |
model.eval()
|
| 21 |
|
| 22 |
+
# ===== μ νΈ =====
|
| 23 |
def normalize_text(text: str) -> str:
|
| 24 |
return re.sub(r"\s+", " ", text).strip()
|
| 25 |
|
|
|
|
| 54 |
chunks.append(" ".join(cur))
|
| 55 |
return chunks
|
| 56 |
|
| 57 |
+
# ===== μμ½ =====
|
| 58 |
def summarize_raw(text: str, min_len: int, max_len: int) -> str:
|
| 59 |
+
input_ids = tokenizer.encode(text, return_tensors="pt", truncation=True, max_length=1024)
|
| 60 |
with torch.no_grad():
|
| 61 |
summary_ids = model.generate(
|
| 62 |
+
input_ids,
|
| 63 |
num_beams=4,
|
| 64 |
min_length=min_len,
|
| 65 |
max_length=max_len,
|
| 66 |
+
early_stopping=True
|
|
|
|
| 67 |
)
|
| 68 |
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 69 |
|
|
|
|
| 75 |
else:
|
| 76 |
inst = "λ€μ νκ΅μ΄ ν
μ€νΈλ₯Ό bullet ννλ‘ ν΅μ¬λ§ μμ½νμΈμ."
|
| 77 |
if final:
|
| 78 |
+
inst += " μλ μμλ₯Ό μ μ§νλ©° λ¬Έμ₯ μ°κ²°μ μμ°μ€λ½κ² νμΈμ."
|
| 79 |
+
return f"{inst}\n\n{text}"
|
| 80 |
|
| 81 |
def postprocess(summary: str, mode: str) -> str:
|
| 82 |
s = summary.strip()
|
|
|
|
| 122 |
return summarize_long(text, int(target_len), mode)
|
| 123 |
|
| 124 |
with gr.Blocks() as demo:
|
| 125 |
+
gr.Markdown("## π KoT5 νκ΅μ΄ μμ½κΈ° (κΈ΄ λ¬Έμ μλ λΆν + μμ 보쑴)")
|
| 126 |
with gr.Row():
|
| 127 |
with gr.Column():
|
| 128 |
input_text = gr.Textbox(label="μλ¬Έ μ
λ ₯", lines=16)
|