feynbot-ir / app.py
pendrag's picture
added a new example
a7a7442
from openai import OpenAI
# Prefer the new Google GenAI SDK if available (import style: `from google import genai`).
# Fall back to the legacy `google.generativeai` package if that's what's installed.
try:
from google import genai # new `google-genai` package
except Exception:
try:
import google.generativeai as genai # older, deprecated package
except Exception:
genai = None
import os
import requests
import json
import gradio as gr
import time
import re
#export GRADIO_DEBUG=1
# ----------- CONFIGURATION ----------------------------------------------------
# OPENAI_API_KEY must be set in the environment
# Model name for LLM calls. Can be overridden by setting the LLM_MODEL
# environment variable. Falls back to a sensible default if unset.
MODEL_NAME = os.getenv("LLM_MODEL", "models/gemini-flash-latest")
GENAI_API = os.getenv("GENAI_API", "gemini")
# LLM_MODEL_NAME must be set in the environment
def _extract_text_from_message(message):
"""Extract plain text from a message entry used in this codebase.
Messages in this project often look like:
{"role": "user", "content": [{"type": "text", "text": "..."}]}
This helper normalizes that shape to a single string.
"""
content = message.get("content")
if isinstance(content, list) and len(content) > 0:
first = content[0]
if isinstance(first, dict) and "text" in first:
return first.get("text", "")
return str(first)
if isinstance(content, dict) and "text" in content:
return content.get("text", "")
if isinstance(content, str):
return content
return str(content)
def create_chat_response(messages, model, temperature=0, max_tokens=2048):
"""Unified helper to produce a text response from either OpenAI or
Google's GenAI backends.
Returns a plain string with the assistant reply.
"""
# OpenAI-style client: keep calling the same API
if GENAI_API == "openai":
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
)
# Expect OpenAI-style response
try:
return response.choices[0].message.content
except Exception:
# Fallback: stringify
return str(response)
# Google GenAI path: convert messages to a single prompt and call
# the available model API (best-effort mapping).
prompt = "\n\n".join(f"{m.get('role','')}: {_extract_text_from_message(m)}" for m in messages)
# Try common modern GenAI SDK pattern: client.models.generate_content
try:
if hasattr(client, "models") and hasattr(client.models, "generate_content"):
# Use names similar to examples: contents and optional params
try:
resp = client.models.generate_content(model=model, contents=prompt, temperature=temperature, max_output_tokens=max_tokens)
except TypeError:
# Some versions may not accept those named args; try minimal call
resp = client.models.generate_content(model=model, contents=prompt)
# Response object often has `.text` or `.content`
text = getattr(resp, "text", None) or getattr(resp, "content", None)
if text is None:
return str(resp)
return text
# Older `google.generativeai` (legacy) had different surface; try a
# generous fallback: look for a top-level `generate` or `generate_text`.
if hasattr(client, "generate"):
resp = client.generate(prompt)
return getattr(resp, "text", str(resp))
if hasattr(client, "generate_text"):
resp = client.generate_text(prompt)
return getattr(resp, "text", str(resp))
except Exception as e:
# Surface the error with context to help debugging.
raise RuntimeError(f"GenAI model call failed: {e}")
raise RuntimeError("No suitable GenAI method found on `client`; please install/initialize supported SDK or set GENAI_API=openai")
def search_inspire(query, size=10):
"""
Search INSPIRE HEP database using fulltext search
Args:
query (str): Search query
size (int): Number of results to return
"""
base_url = "https://inspirehep.net/api/literature"
params = {
"q": query,
"size": size,
"format": "json"
}
response = requests.get(base_url, params=params)
return response.json()
def format_reference(metadata):
output = f"{', '.join(author.get('full_name', '') for author in metadata.get('authors', []))} "
output += f"({metadata.get('publication_info', [{}])[0].get('year', 'N/A')}). "
output += f"*{metadata.get('titles', [{}])[0].get('title', 'N/A')}*. "
output += f"DOI: {metadata.get('dois', [{}])[0].get('value', 'N/A') if metadata.get('dois') else 'N/A'}. "
output += f"[INSPIRE record {metadata['control_number']}](https://inspirehep.net/literature/{metadata['control_number']})"
output += "\n\n"
return output
def format_results(results):
"""Print formatted search results"""
output = ""
for i, hit in enumerate(results['hits']['hits']):
metadata = hit['metadata']
output += f"**[{i}]** "
output += format_reference(metadata)
return output
def results_context(results):
""" Prepare a context from the results for the LLM """
context = ""
for i, hit in enumerate(results['hits']['hits']):
metadata = hit['metadata']
context += f"Result [{i}]\n\n"
context += f"Title: {metadata.get('titles', [{}])[0].get('title', 'N/A')}\n\n"
context += f"Abstract: {metadata.get('abstracts', [{}])[0].get('value', 'N/A')}\n\n"
return context
def user_prompt(query, context):
""" Generate a prompt for the LLM """
prompt = f"""
QUERY: {query}
CONTEXT:
{context}
ANSWER:
"""
return prompt
def llm_expand_query(query):
""" Expands a query to variations of fulltext searches """
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": f"""
Expand this query into a the query format used for a fulltext search
over the INSPIRE HEP database. Propose alternatives of the query to
maximize the recall and join those variantes using OR operators and
prepend each variant with the ft prefix. Just provide the expanded
query, without explanations.
Example of query:
how far are black holes?
Expanded query:
ft "how far are black holes" OR ft "distance from black holes" OR ft
"distances to black holes" OR ft "measurement of distance to black
holes" OR ft "remoteness of black holes" OR ft "distance to black
holes" OR ft "how far are singularities" OR ft "distance to
singularities" OR ft "distances to event horizon" OR ft "distance
from Schwarzschild radius" OR ft "black hole distance"
Query: {query}
Expanded query:
"""
}
]
}
]
return create_chat_response(messages=messages, model=MODEL_NAME, temperature=0, max_tokens=2048)
def llm_generate_answer(prompt):
""" Generate a response from the LLM """
messages = [
{
"role": "system",
"content": [
{
"type": "text",
"text": """You are part of a Retrieval Augmented Generation system
(RAG) and are asked with a query and a context of results. Generate an
answer substantiated by the results provided and citing them using
their index when used to provide an answer text. Do not put two or more
references together (ex: use [1][2] instead of [1,2]. Do not generate an answer
that cannot be entailed from cited abstract, so all paragraphs should cite a
search result. End the answer with the query and a brief answer as
summary of the previous discussed results. Do not consider results
that are not related to the query and, if no specific answer can be
provided, assert that in the brief answer."""
}
]
},
{
"role": "user",
"content": [
{
"type": "text",
"text": prompt
}
]
}
]
return create_chat_response(messages=messages, model=MODEL_NAME, temperature=0, max_tokens=2048)
def clean_refs(answer, results):
""" Clean the references from the answer """
# Find references
unique_ordered = []
for match in re.finditer(r'\[(\d+)\]', answer):
ref_num = int(match.group(1))
if ref_num not in unique_ordered:
unique_ordered.append(ref_num)
# Filter references
new_i = 1
new_results = ""
for i, hit in enumerate(results['hits']['hits']):
if i not in unique_ordered:
continue
metadata = hit['metadata']
new_results += f"**[{new_i}]** "
new_results += format_reference(metadata)
new_i += 1
new_i = 1
for i in unique_ordered:
answer = answer.replace(f"[{i}]", f" **[__NEW_REF_ID_{new_i}]**")
new_i += 1
answer = answer.replace("__NEW_REF_ID_", "")
return answer, new_results
def search(query, progress=gr.Progress()):
time.sleep(1)
progress(0, desc="Expanding query...")
expanded_query = llm_expand_query(query)
progress(0.25, desc="Searching INSPIRE HEP...")
results = search_inspire(expanded_query)
progress(0.50, desc="Generating answer...")
context = results_context(results)
prompt = user_prompt(query, context)
answer = llm_generate_answer(prompt)
new_answer, references = clean_refs(answer, results)
progress(1, desc="Done!")
#json_str = json.dumps(results['hits']['hits'][0]['metadata'], indent=4)
return "**Answer**:\n\n" + new_answer +"\n\n**References**:\n\n" + references #+ "\n\n <pre>\n" + json_str + "</pre>"
# ----------- MAIN ------------------------------------------------------------
if GENAI_API == "openai":
client = OpenAI()
elif GENAI_API and GENAI_API.lower() in ("gemini", "google", "genai"):
# If the genai package couldn't be imported earlier, tell the user.
if genai is None:
raise RuntimeError(
"GENAI_API is set to Gemini but no Google GenAI SDK is installed. "
"Install `google-genai` (preferred) or `google-generativeai`, or set GENAI_API=openai."
)
# Prefer the new `genai.Client()` style when available (google-genai SDK).
if hasattr(genai, "Client"):
client = genai.Client(api_key=os.getenv('GEMINI_API_KEY'))
else:
# Legacy SDK: configure module-level API key and use the module as client.
genai.configure(api_key=os.getenv('GEMINI_API_KEY'))
client = genai
else:
# Default to OpenAI client if GENAI_API is unrecognized or unset.
client = OpenAI()
with gr.Blocks() as demo:
gr.Markdown("# Feynbot on INSPIRE HEP Search")
gr.Markdown("""Specialized academic search tool that combines traditional
database searching with AI-powered query expansion and result
synthesis, focused on High Energy Physics research papers.""")
with gr.Row():
with gr.Column():
query = gr.Textbox(label="Search Query")
search_btn = gr.Button("Search")
examples = gr.Examples([
["Which one is closest star?"],
["In which particles does the Higgs Boson decay to?"],
["What is the 'swampland criteria' in inflation?"]], query)
with gr.Row():
gr.HTML("<a href='https://sinai.ujaen.es'><img src='https://sinai.ujaen.es/sites/default/files/SINAI%20-%20logo%20tx%20azul%20%5Baf%5D.png' width='200'></img></a>")
gr.HTML("<a href='https://www.ujaen.es'><img src='https://diariodigital.ujaen.es/sites/default/files/general/logo-uja.svg' width='180'></img></a>")
with gr.Column():
results = gr.Markdown("Answer will appear here...", label="Search Results", )
search_btn.click(fn=search, inputs=query, outputs=results, api_name="search", show_progress=True)
demo.launch()
#print(search("how far are black holes?"))