File size: 10,250 Bytes
ec9a6bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os
import glob
import numpy as np
import igl
import pytorch3d.ops
import tqdm

import smplx
import torch
import trimesh
import config


tmp_dir = './debug/tmp'
os.makedirs(tmp_dir, exist_ok = True)
depth = 7


def compute_lbs_grad(cano_smpl: trimesh.Trimesh, vertex_lbs: np.ndarray):
    vertices = cano_smpl.vertices.astype(np.float32)
    normals = cano_smpl.vertex_normals.copy().astype(np.float32)
    faces = cano_smpl.faces.astype(np.int64)

    normals /= np.linalg.norm(normals, axis = 1, keepdims = True)
    tx = np.cross(normals, np.array([[0, 0, 1]], np.float32))
    tx /= np.linalg.norm(tx, axis = 1, keepdims = True)
    ty = np.cross(normals, tx)

    vnum = vertices.shape[0]
    fnum = faces.shape[0]
    jnum = vertex_lbs.shape[1]
    lbs_grad_tx = np.zeros((vnum, jnum), np.float32)
    lbs_grad_ty = np.zeros((vnum, jnum), np.float32)
    for vidx in tqdm.tqdm(range(vnum)):
        v = vertices[vidx]
        for jidx in range(jnum):
            for neighbor_vidx in cano_smpl.vertex_neighbors[vidx]:
                vn = vertices[neighbor_vidx]
                pos_diff = vn - v
                pos_diff_norm = np.linalg.norm(pos_diff)
                val_diff = vertex_lbs[neighbor_vidx, jidx] - vertex_lbs[vidx, jidx]
                val_diff /= pos_diff_norm
                pos_diff /= pos_diff_norm

                lbs_grad_tx[vidx, jidx] += val_diff * np.dot(pos_diff, tx[vidx])
                lbs_grad_ty[vidx, jidx] += val_diff * np.dot(pos_diff, ty[vidx])

            lbs_grad_tx[vidx, jidx] /= float(len(cano_smpl.vertex_neighbors[vidx]))
            lbs_grad_ty[vidx, jidx] /= float(len(cano_smpl.vertex_neighbors[vidx]))

    # print(lbs_grad_ty)
    # print(lbs_grad_tx)
    lbs_grad = lbs_grad_tx[:, :, None] * tx[:, None] + lbs_grad_ty[:, :, None] * ty[:, None]  # (V, J, 3)
    for jid in tqdm.tqdm(range(jnum)):
        out_fn_grad = os.path.join(tmp_dir, f"cano_data_lbs_grad_{jid:02d}.xyz")
        out_fn_val = os.path.join(tmp_dir, f"cano_data_lbs_val_{jid:02d}.xyz")

        out_data_grad = np.concatenate([vertices, lbs_grad[:, jid]], 1)
        out_data_val = np.concatenate([vertices, vertex_lbs[:, jid:jid+1]], 1)
        np.savetxt(out_fn_grad, out_data_grad, fmt="%.8f")
        np.savetxt(out_fn_val, out_data_val, fmt="%.8f")


def solve(num_joints, point_interpolant_exe):
    for jid in range(num_joints):
        print('Solving joint %d' % jid)
        cmd = f'{point_interpolant_exe} ' + \
            f'--inValues {os.path.join(tmp_dir, f"cano_data_lbs_val_{jid:02d}.xyz")} ' + \
            f'--inGradients {os.path.join(tmp_dir, f"cano_data_lbs_grad_{jid:02d}.xyz")} ' + \
            f'--gradientWeight 0.05 --dim 3 --verbose ' + \
            f'--grid {os.path.join(tmp_dir, f"grid_{jid:02d}.grd")} ' + \
            f'--depth {depth} '

        os.system(cmd)


@torch.no_grad()
def calc_cano_weight_volume(data_dir, gender = 'neutral'):
    smpl_params = np.load(data_dir + '/smpl_params.npz')
    smpl_shape = torch.from_numpy(smpl_params['betas'][0]).to(torch.float32)
    smpl_model = smplx.SMPLX(model_path = config.PROJ_DIR + '/smpl_files/smplx', gender = gender, use_pca = False, num_pca_comps = 45, flat_hand_mean = True, batch_size = 1)

    def get_grid_points(bounds, res):
        # voxel_size = (bounds[1] - bounds[0]) / (np.array(res, np.float32) - 1)
        # x = np.arange(bounds[0, 0], bounds[1, 0] + voxel_size[0], voxel_size[0])
        # y = np.arange(bounds[0, 1], bounds[1, 1] + voxel_size[1], voxel_size[1])
        # z = np.arange(bounds[0, 2], bounds[1, 2] + voxel_size[2], voxel_size[2])
        x = np.linspace(bounds[0, 0], bounds[1, 0], res[0])
        y = np.linspace(bounds[0, 1], bounds[1, 1], res[1])
        z = np.linspace(bounds[0, 2], bounds[1, 2], res[2])

        pts = np.stack(np.meshgrid(x, y, z, indexing = 'ij'), axis = -1)
        return pts

    if isinstance(smpl_model, smplx.SMPLX):
        cano_smpl = smpl_model.forward(betas = smpl_shape[None],
                                       global_orient = config.cano_smpl_global_orient[None],
                                       transl = config.cano_smpl_transl[None],
                                       body_pose = config.cano_smpl_body_pose[None])
    elif isinstance(smpl_model, smplx.SMPL):
        cano_smpl = smpl_model.forward(betas = smpl_shape[None],
                                       global_orient = config.cano_smpl_global_orient[None],
                                       transl = config.cano_smpl_transl[None],
                                       body_pose = config.cano_smpl_pose[6:][None])
    else:
        raise TypeError('Not support this SMPL type.')

    cano_smpl_trimesh = trimesh.Trimesh(
        cano_smpl.vertices[0].cpu().numpy(),
        smpl_model.faces,
        process = False
    )

    compute_lbs_grad(cano_smpl_trimesh, smpl_model.lbs_weights.cpu().numpy())
    solve(smpl_model.lbs_weights.shape[-1], ".\\bins\\PointInterpolant.exe")

    ### NOTE concatenate all grids
    fn_list = sorted(list(glob.glob(os.path.join(tmp_dir, 'grid_*.grd'))))

    grids = []
    import array
    for fn in fn_list:
        with open(fn, 'rb') as f:
            bytes = f.read()
        grid_res = 2 ** depth
        grid_header_len = len(bytes) - grid_res ** 3 * 8
        grid_np = np.array(array.array('d', bytes[grid_header_len:])).reshape(grid_res, grid_res, grid_res)
        grids.append(grid_np)

    grids_all = np.stack(grids, 0)
    grids_all = np.clip(grids_all, 0.0, 1.0)
    grids_all = grids_all / grids_all.sum(0)[None]
    # print(grids_all.shape)
    # np.save(join(data_templates_path, subject, subject + '_cano_lbs_weights_grid_float32.npy'), grids_all.astype(np.float32))
    diff_weights = grids_all.transpose((3, 2, 1, 0))  # convert to xyz
    min_xyz = cano_smpl_trimesh.vertices.min(0).astype(np.float32)
    max_xyz = cano_smpl_trimesh.vertices.max(0).astype(np.float32)
    max_len = 1.1 * (max_xyz - min_xyz).max()
    center = 0.5 * (min_xyz + max_xyz)
    volume_bounds = np.stack(
        [center - 0.5 * max_len, center + 0.5 * max_len], 0
    )

    min_xyz[:2] -= 0.05
    max_xyz[:2] += 0.05
    min_xyz[2] -= 0.15
    max_xyz[2] += 0.15
    smpl_bounds = np.stack(
        [min_xyz, max_xyz], 0
    )

    res = diff_weights.shape[:3]
    pts = get_grid_points(volume_bounds, res)
    pts = pts.reshape(-1, 3)
    dists, face_id, closest_pts = igl.signed_distance(pts, cano_smpl_trimesh.vertices, smpl_model.faces.astype(np.int32))
    triangles = cano_smpl_trimesh.vertices[smpl_model.faces[face_id]]
    weights = smpl_model.lbs_weights.numpy()[smpl_model.faces[face_id]]
    barycentric_weight = trimesh.triangles.points_to_barycentric(triangles, closest_pts)
    ori_weights = (barycentric_weight[:, :, None] * weights).sum(1)
    # weights[dists > 0.08] = 0.
    dists = dists.reshape(res).astype(np.float32)
    ori_weights = ori_weights.reshape(list(res) + [-1]).astype(np.float32)

    np.savez(data_dir + '/cano_weight_volume.npz',
             diff_weight_volume = diff_weights.astype(np.float32),
             ori_weight_volume = ori_weights.astype(np.float32),
             sdf_volume = -dists,
             volume_bounds = volume_bounds,
             smpl_bounds = smpl_bounds,
             center = center)

    # # debug
    # from network.volume import CanoBlendWeightVolume
    # from utils.smpl_util import skinning
    # weight_volume = CanoBlendWeightVolume(data_dir + '/cano_weight_volume.npz')
    # pts_w = weight_volume.forward_weight(torch.from_numpy(cano_smpl_trimesh.vertices).to(torch.float32).to(config.device))
    # pts_w = pts_w[0].cpu().numpy()
    # np.savetxt('../debug/pts_w_query.txt', pts_w, fmt = '%.8f')
    # np.savetxt('../debug/pts_w_val.txt', smpl_model.lbs_weights.cpu().numpy(), fmt = '%.8f')
    #
    # # smpl_data = np.load(data_dir + '/smpl_params.npz')
    # smpl_data = np.load('F:/pose/thuman4/pose_01.npz')
    # smpl_data = {k: torch.from_numpy(v).to(torch.float32) for k, v in smpl_data.items()}
    # frame_idx = 61
    # posed_smpl = smpl_model.forward(
    #     betas = smpl_data['betas'],
    #     global_orient = smpl_data['global_orient'][frame_idx: frame_idx+1],
    #     transl = smpl_data['transl'][frame_idx: frame_idx+1],
    #     body_pose = smpl_data['body_pose'][frame_idx: frame_idx+1]
    # )
    # jnt_mats = torch.matmul(posed_smpl.A, cano_smpl.A.inverse())
    # pts_w = torch.from_numpy(pts_w).to(torch.float32)
    # cano_verts = torch.from_numpy(cano_smpl_trimesh.vertices).to(torch.float32)
    # posed_v_query = skinning(cano_verts[None], pts_w[None], jnt_mats)
    # posed_v_ori = skinning(cano_verts[None], smpl_model.lbs_weights[None], jnt_mats)
    # posed_smpl_query = trimesh.Trimesh(posed_v_query.cpu().numpy()[0], smpl_model.faces, process = False)
    # posed_smpl_ori = trimesh.Trimesh(posed_v_ori.cpu().numpy()[0], smpl_model.faces, process = False)
    # posed_smpl_query.export('../debug/posed_smpl_query.obj')
    # posed_smpl_ori.export('../debug/posed_smpl_ori.obj')
    # cano_smpl_trimesh.export('../debug/cano_smpl.obj')
    #
    # cano_mesh = trimesh.load('../debug/cano_mesh.ply', process = False)
    # cano_mesh_v = torch.from_numpy(cano_mesh.vertices).to(torch.float32)
    # cano_mesh_lbs = weight_volume.forward_weight(cano_mesh_v.to(config.device)).cpu()[0]
    # posed_mesh_v_query = skinning(cano_mesh_v[None], cano_mesh_lbs[None], jnt_mats)
    # posed_mesh_query = trimesh.Trimesh(posed_mesh_v_query[0].cpu().numpy(), cano_mesh.faces, process = False)
    # posed_mesh_query.export('../debug/posed_mesh_query.obj')


if __name__ == '__main__':
    from argparse import ArgumentParser
    import yaml

    arg_parser = ArgumentParser()
    arg_parser.add_argument('-c', '--config_path', type = str, help = 'Configuration file path.')
    args = arg_parser.parse_args()

    opt = yaml.load(open(args.config_path, encoding = 'UTF-8'), Loader = yaml.FullLoader)
    data_dir = opt['train']['data']['data_dir']

    calc_cano_weight_volume(data_dir, gender = 'neutral')