Spaces:
Runtime error
Runtime error
File size: 10,250 Bytes
ec9a6bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import os
import glob
import numpy as np
import igl
import pytorch3d.ops
import tqdm
import smplx
import torch
import trimesh
import config
tmp_dir = './debug/tmp'
os.makedirs(tmp_dir, exist_ok = True)
depth = 7
def compute_lbs_grad(cano_smpl: trimesh.Trimesh, vertex_lbs: np.ndarray):
vertices = cano_smpl.vertices.astype(np.float32)
normals = cano_smpl.vertex_normals.copy().astype(np.float32)
faces = cano_smpl.faces.astype(np.int64)
normals /= np.linalg.norm(normals, axis = 1, keepdims = True)
tx = np.cross(normals, np.array([[0, 0, 1]], np.float32))
tx /= np.linalg.norm(tx, axis = 1, keepdims = True)
ty = np.cross(normals, tx)
vnum = vertices.shape[0]
fnum = faces.shape[0]
jnum = vertex_lbs.shape[1]
lbs_grad_tx = np.zeros((vnum, jnum), np.float32)
lbs_grad_ty = np.zeros((vnum, jnum), np.float32)
for vidx in tqdm.tqdm(range(vnum)):
v = vertices[vidx]
for jidx in range(jnum):
for neighbor_vidx in cano_smpl.vertex_neighbors[vidx]:
vn = vertices[neighbor_vidx]
pos_diff = vn - v
pos_diff_norm = np.linalg.norm(pos_diff)
val_diff = vertex_lbs[neighbor_vidx, jidx] - vertex_lbs[vidx, jidx]
val_diff /= pos_diff_norm
pos_diff /= pos_diff_norm
lbs_grad_tx[vidx, jidx] += val_diff * np.dot(pos_diff, tx[vidx])
lbs_grad_ty[vidx, jidx] += val_diff * np.dot(pos_diff, ty[vidx])
lbs_grad_tx[vidx, jidx] /= float(len(cano_smpl.vertex_neighbors[vidx]))
lbs_grad_ty[vidx, jidx] /= float(len(cano_smpl.vertex_neighbors[vidx]))
# print(lbs_grad_ty)
# print(lbs_grad_tx)
lbs_grad = lbs_grad_tx[:, :, None] * tx[:, None] + lbs_grad_ty[:, :, None] * ty[:, None] # (V, J, 3)
for jid in tqdm.tqdm(range(jnum)):
out_fn_grad = os.path.join(tmp_dir, f"cano_data_lbs_grad_{jid:02d}.xyz")
out_fn_val = os.path.join(tmp_dir, f"cano_data_lbs_val_{jid:02d}.xyz")
out_data_grad = np.concatenate([vertices, lbs_grad[:, jid]], 1)
out_data_val = np.concatenate([vertices, vertex_lbs[:, jid:jid+1]], 1)
np.savetxt(out_fn_grad, out_data_grad, fmt="%.8f")
np.savetxt(out_fn_val, out_data_val, fmt="%.8f")
def solve(num_joints, point_interpolant_exe):
for jid in range(num_joints):
print('Solving joint %d' % jid)
cmd = f'{point_interpolant_exe} ' + \
f'--inValues {os.path.join(tmp_dir, f"cano_data_lbs_val_{jid:02d}.xyz")} ' + \
f'--inGradients {os.path.join(tmp_dir, f"cano_data_lbs_grad_{jid:02d}.xyz")} ' + \
f'--gradientWeight 0.05 --dim 3 --verbose ' + \
f'--grid {os.path.join(tmp_dir, f"grid_{jid:02d}.grd")} ' + \
f'--depth {depth} '
os.system(cmd)
@torch.no_grad()
def calc_cano_weight_volume(data_dir, gender = 'neutral'):
smpl_params = np.load(data_dir + '/smpl_params.npz')
smpl_shape = torch.from_numpy(smpl_params['betas'][0]).to(torch.float32)
smpl_model = smplx.SMPLX(model_path = config.PROJ_DIR + '/smpl_files/smplx', gender = gender, use_pca = False, num_pca_comps = 45, flat_hand_mean = True, batch_size = 1)
def get_grid_points(bounds, res):
# voxel_size = (bounds[1] - bounds[0]) / (np.array(res, np.float32) - 1)
# x = np.arange(bounds[0, 0], bounds[1, 0] + voxel_size[0], voxel_size[0])
# y = np.arange(bounds[0, 1], bounds[1, 1] + voxel_size[1], voxel_size[1])
# z = np.arange(bounds[0, 2], bounds[1, 2] + voxel_size[2], voxel_size[2])
x = np.linspace(bounds[0, 0], bounds[1, 0], res[0])
y = np.linspace(bounds[0, 1], bounds[1, 1], res[1])
z = np.linspace(bounds[0, 2], bounds[1, 2], res[2])
pts = np.stack(np.meshgrid(x, y, z, indexing = 'ij'), axis = -1)
return pts
if isinstance(smpl_model, smplx.SMPLX):
cano_smpl = smpl_model.forward(betas = smpl_shape[None],
global_orient = config.cano_smpl_global_orient[None],
transl = config.cano_smpl_transl[None],
body_pose = config.cano_smpl_body_pose[None])
elif isinstance(smpl_model, smplx.SMPL):
cano_smpl = smpl_model.forward(betas = smpl_shape[None],
global_orient = config.cano_smpl_global_orient[None],
transl = config.cano_smpl_transl[None],
body_pose = config.cano_smpl_pose[6:][None])
else:
raise TypeError('Not support this SMPL type.')
cano_smpl_trimesh = trimesh.Trimesh(
cano_smpl.vertices[0].cpu().numpy(),
smpl_model.faces,
process = False
)
compute_lbs_grad(cano_smpl_trimesh, smpl_model.lbs_weights.cpu().numpy())
solve(smpl_model.lbs_weights.shape[-1], ".\\bins\\PointInterpolant.exe")
### NOTE concatenate all grids
fn_list = sorted(list(glob.glob(os.path.join(tmp_dir, 'grid_*.grd'))))
grids = []
import array
for fn in fn_list:
with open(fn, 'rb') as f:
bytes = f.read()
grid_res = 2 ** depth
grid_header_len = len(bytes) - grid_res ** 3 * 8
grid_np = np.array(array.array('d', bytes[grid_header_len:])).reshape(grid_res, grid_res, grid_res)
grids.append(grid_np)
grids_all = np.stack(grids, 0)
grids_all = np.clip(grids_all, 0.0, 1.0)
grids_all = grids_all / grids_all.sum(0)[None]
# print(grids_all.shape)
# np.save(join(data_templates_path, subject, subject + '_cano_lbs_weights_grid_float32.npy'), grids_all.astype(np.float32))
diff_weights = grids_all.transpose((3, 2, 1, 0)) # convert to xyz
min_xyz = cano_smpl_trimesh.vertices.min(0).astype(np.float32)
max_xyz = cano_smpl_trimesh.vertices.max(0).astype(np.float32)
max_len = 1.1 * (max_xyz - min_xyz).max()
center = 0.5 * (min_xyz + max_xyz)
volume_bounds = np.stack(
[center - 0.5 * max_len, center + 0.5 * max_len], 0
)
min_xyz[:2] -= 0.05
max_xyz[:2] += 0.05
min_xyz[2] -= 0.15
max_xyz[2] += 0.15
smpl_bounds = np.stack(
[min_xyz, max_xyz], 0
)
res = diff_weights.shape[:3]
pts = get_grid_points(volume_bounds, res)
pts = pts.reshape(-1, 3)
dists, face_id, closest_pts = igl.signed_distance(pts, cano_smpl_trimesh.vertices, smpl_model.faces.astype(np.int32))
triangles = cano_smpl_trimesh.vertices[smpl_model.faces[face_id]]
weights = smpl_model.lbs_weights.numpy()[smpl_model.faces[face_id]]
barycentric_weight = trimesh.triangles.points_to_barycentric(triangles, closest_pts)
ori_weights = (barycentric_weight[:, :, None] * weights).sum(1)
# weights[dists > 0.08] = 0.
dists = dists.reshape(res).astype(np.float32)
ori_weights = ori_weights.reshape(list(res) + [-1]).astype(np.float32)
np.savez(data_dir + '/cano_weight_volume.npz',
diff_weight_volume = diff_weights.astype(np.float32),
ori_weight_volume = ori_weights.astype(np.float32),
sdf_volume = -dists,
volume_bounds = volume_bounds,
smpl_bounds = smpl_bounds,
center = center)
# # debug
# from network.volume import CanoBlendWeightVolume
# from utils.smpl_util import skinning
# weight_volume = CanoBlendWeightVolume(data_dir + '/cano_weight_volume.npz')
# pts_w = weight_volume.forward_weight(torch.from_numpy(cano_smpl_trimesh.vertices).to(torch.float32).to(config.device))
# pts_w = pts_w[0].cpu().numpy()
# np.savetxt('../debug/pts_w_query.txt', pts_w, fmt = '%.8f')
# np.savetxt('../debug/pts_w_val.txt', smpl_model.lbs_weights.cpu().numpy(), fmt = '%.8f')
#
# # smpl_data = np.load(data_dir + '/smpl_params.npz')
# smpl_data = np.load('F:/pose/thuman4/pose_01.npz')
# smpl_data = {k: torch.from_numpy(v).to(torch.float32) for k, v in smpl_data.items()}
# frame_idx = 61
# posed_smpl = smpl_model.forward(
# betas = smpl_data['betas'],
# global_orient = smpl_data['global_orient'][frame_idx: frame_idx+1],
# transl = smpl_data['transl'][frame_idx: frame_idx+1],
# body_pose = smpl_data['body_pose'][frame_idx: frame_idx+1]
# )
# jnt_mats = torch.matmul(posed_smpl.A, cano_smpl.A.inverse())
# pts_w = torch.from_numpy(pts_w).to(torch.float32)
# cano_verts = torch.from_numpy(cano_smpl_trimesh.vertices).to(torch.float32)
# posed_v_query = skinning(cano_verts[None], pts_w[None], jnt_mats)
# posed_v_ori = skinning(cano_verts[None], smpl_model.lbs_weights[None], jnt_mats)
# posed_smpl_query = trimesh.Trimesh(posed_v_query.cpu().numpy()[0], smpl_model.faces, process = False)
# posed_smpl_ori = trimesh.Trimesh(posed_v_ori.cpu().numpy()[0], smpl_model.faces, process = False)
# posed_smpl_query.export('../debug/posed_smpl_query.obj')
# posed_smpl_ori.export('../debug/posed_smpl_ori.obj')
# cano_smpl_trimesh.export('../debug/cano_smpl.obj')
#
# cano_mesh = trimesh.load('../debug/cano_mesh.ply', process = False)
# cano_mesh_v = torch.from_numpy(cano_mesh.vertices).to(torch.float32)
# cano_mesh_lbs = weight_volume.forward_weight(cano_mesh_v.to(config.device)).cpu()[0]
# posed_mesh_v_query = skinning(cano_mesh_v[None], cano_mesh_lbs[None], jnt_mats)
# posed_mesh_query = trimesh.Trimesh(posed_mesh_v_query[0].cpu().numpy(), cano_mesh.faces, process = False)
# posed_mesh_query.export('../debug/posed_mesh_query.obj')
if __name__ == '__main__':
from argparse import ArgumentParser
import yaml
arg_parser = ArgumentParser()
arg_parser.add_argument('-c', '--config_path', type = str, help = 'Configuration file path.')
args = arg_parser.parse_args()
opt = yaml.load(open(args.config_path, encoding = 'UTF-8'), Loader = yaml.FullLoader)
data_dir = opt['train']['data']['data_dir']
calc_cano_weight_volume(data_dir, gender = 'neutral')
|