File size: 19,850 Bytes
ec9a6bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
import torch.nn as nn
import torch
import torch.nn.functional as F
import numpy as np


def init_out_weights(self):
    for m in self.modules():
        for name, param in m.named_parameters():
            if 'weight' in name:
                nn.init.uniform_(param.data, -1e-5, 1e-5)
            elif 'bias' in name:
                nn.init.constant_(param.data, 0.0)


class MLP(nn.Module):
    def __init__(self, in_channels, out_channels, inter_channels = [512, 512, 512, 343, 512, 512],

                 res_layers = [], nlactv = nn.ReLU(), last_op=None, norm = None, init_last_layer = False):
        super(MLP, self).__init__()

        self.nlactv = nlactv

        self.fc_list = nn.ModuleList()
        self.res_layers = res_layers
        if self.res_layers is None:
            self.res_layers = []

        self.all_channels = [in_channels] + inter_channels + [out_channels]
        for l in range(0, len(self.all_channels) - 2):
            if l in self.res_layers:
                if norm == 'weight':
                    # print('layer %d weight normalization in fusion mlp' % l)
                    self.fc_list.append(nn.Sequential(
                        nn.utils.weight_norm(nn.Conv1d(self.all_channels[l] + self.all_channels[0], self.all_channels[l + 1], 1)),
                        self.nlactv
                    ))
                else:
                    self.fc_list.append(nn.Sequential(
                        nn.Conv1d(self.all_channels[l] + self.all_channels[0], self.all_channels[l + 1], 1),
                        self.nlactv
                    ))
                self.all_channels[l] += self.all_channels[0]
            else:
                if norm == 'weight':
                    # print('layer %d weight normalization in fusion mlp' % l)
                    self.fc_list.append(nn.Sequential(
                        nn.utils.weight_norm(nn.Conv1d(self.all_channels[l], self.all_channels[l + 1], 1)),
                        self.nlactv
                    ))
                else:
                    self.fc_list.append(nn.Sequential(
                        nn.Conv1d(self.all_channels[l], self.all_channels[l + 1], 1),
                        self.nlactv
                    ))

        self.fc_list.append(nn.Conv1d(self.all_channels[-2], out_channels, 1))

        if init_last_layer:
            self.fc_list[-1].apply(init_out_weights)

        if last_op == 'sigmoid':
            self.last_op = nn.Sigmoid()
        elif last_op == 'tanh':
            self.last_op = nn.Tanh()
        else:
            self.last_op = None

    def forward(self, x, return_inter_layer = []):
        tmpx = x
        inter_feat_list = []
        for i, fc in enumerate(self.fc_list):
            if i in self.res_layers:
                x = fc(torch.cat([x, tmpx], dim = 1))
            else:
                x = fc(x)
            if i == len(self.fc_list) - 1 and self.last_op is not None:  # last layer
                x = self.last_op(x)
            if i in return_inter_layer:
                inter_feat_list.append(x.clone())

        if len(return_inter_layer) > 0:
            return x, inter_feat_list
        else:
            return x


class MLPLinear(nn.Module):
    def __init__(self,

                 in_channels,

                 out_channels,

                 inter_channels,

                 res_layers = [],

                 nlactv = nn.ReLU(),

                 last_op = None):
        super(MLPLinear, self).__init__()

        self.fc_list = nn.ModuleList()
        self.all_channels = [in_channels] + inter_channels + [out_channels]
        self.res_layers = res_layers
        self.nlactv = nlactv
        self.last_op = last_op

        for l in range(0, len(self.all_channels) - 2):
            if l in self.res_layers:
                self.all_channels[l] += in_channels
            self.fc_list.append(
                nn.Sequential(
                    nn.Linear(self.all_channels[l], self.all_channels[l + 1]),
                    self.nlactv
                )
            )
        self.fc_list.append(nn.Linear(self.all_channels[-2], self.all_channels[-1]))

    def forward(self, x):
        tmpx = x
        for i, layer in enumerate(self.fc_list):
            if i in self.res_layers:
                x = torch.cat([x, tmpx], dim = -1)
            x = layer(x)
        if self.last_op is not None:
            x = self.last_op(x)
        return x


def parallel_concat(tensors: list, n_parallel_group: int):
    """

    :param tensors: list of tensors, each of which has a shape of [B, G*C, N]

    :param n_parallel_group:

    :return: [B, G*C', N]

    """
    batch_size = tensors[0].shape[0]
    point_num = tensors[0].shape[-1]
    assert all([t.shape[0] == batch_size for t in tensors]), 'All tensors should have the same batch size'
    assert all([t.shape[2] == point_num for t in tensors]), 'All tensors should have the same point num'
    assert all([t.shape[1] % n_parallel_group==0 for t in tensors]), 'Invalid tensor channels'

    tensors_ = [
        t.reshape(batch_size, n_parallel_group, -1, point_num) for t in tensors
    ]
    concated = torch.cat(tensors_, dim=2)
    concated = concated.reshape(batch_size, -1, point_num)
    return concated


class ParallelMLP(nn.Module):
    def __init__(self,

                 in_channels,

                 out_channels,

                 group_num,

                 inter_channels,

                 res_layers = [],

                 nlactv = nn.ReLU(),

                 last_op = None):
        super(ParallelMLP, self).__init__()

        self.fc_list = nn.ModuleList()
        self.all_channels = [in_channels] + inter_channels + [out_channels]
        self.group_num = group_num
        self.res_layers = res_layers
        self.nlactv = nlactv
        self.last_op = last_op

        for l in range(0, len(self.all_channels) - 2):
            if l in self.res_layers:
                self.all_channels[l] += in_channels
            self.fc_list.append(
                nn.Sequential(
                    nn.Conv1d(self.all_channels[l] * self.group_num, self.all_channels[l + 1] * self.group_num, 1, groups = self.group_num),
                    self.nlactv
                )
            )
        self.fc_list.append(nn.Conv1d(self.all_channels[-2] * self.group_num, self.all_channels[-1] * self.group_num, 1, groups = self.group_num))

    def forward(self, x):
        """

        :param x: (batch_size, group_num, point_num, in_channels)

        :return: (batch_size, group_num, point_num, out_channels)

        """
        assert len(x.shape) == 4, 'input tensor should be a shape of [B, G, N, C]'
        assert x.shape[1] == self.group_num, 'input tensor should have %d parallel groups, but it has %s' % (self.group_num, x.shape[1])

        B, G, N, C = x.shape
        x = x.permute(0, 1, 3, 2).reshape(B, G * C, N)
        tmpx = x
        for i, layer in enumerate(self.fc_list):
            if i in self.res_layers:
                x = parallel_concat([x, tmpx], G)
            x = layer(x)
        if self.last_op is not None:
            x = self.last_op(x)
        x = x.view(B, G, -1, N).permute(0, 1, 3, 2)
        return x


class SdfMLP(MLPLinear):
    def __init__(self,

                 in_channels,

                 out_channels,

                 inter_channels,

                 res_layers = [],

                 nlactv = nn.Softplus(beta = 100),

                 geometric_init = True,

                 bias = 0.5,

                 weight_norm = True

                 ):
        super(SdfMLP, self).__init__(in_channels,
                                     out_channels,
                                     inter_channels,
                                     res_layers,
                                     nlactv,
                                     None)

        for l, layer in enumerate(self.fc_list):
            if isinstance(layer, nn.Sequential):
                lin = layer[0]
            elif isinstance(layer, nn.Linear):
                lin = layer
            else:
                raise TypeError('Invalid %d layer' % l)
            if geometric_init:
                in_dim, out_dim = lin.in_features, lin.out_features
                if l == len(self.fc_list) - 1:
                    torch.nn.init.normal_(lin.weight, mean = np.sqrt(np.pi) / np.sqrt(in_dim), std = 0.0001)
                    torch.nn.init.constant_(lin.bias, -bias)
                elif l == 0:
                    torch.nn.init.constant_(lin.bias, 0.0)
                    torch.nn.init.constant_(lin.weight[:, 3:], 0.0)
                    torch.nn.init.normal_(lin.weight[:, :3], 0.0, np.sqrt(2) / np.sqrt(out_dim))
                elif l in self.res_layers:
                    torch.nn.init.constant_(lin.bias, 0.0)
                    torch.nn.init.normal_(lin.weight, 0.0, np.sqrt(2) / np.sqrt(out_dim))
                    torch.nn.init.constant_(lin.weight[:, -(in_channels - 3):], 0.0)
                else:
                    torch.nn.init.constant_(lin.bias, 0.0)
                    torch.nn.init.normal_(lin.weight, 0.0, np.sqrt(2) / np.sqrt(out_dim))

            if weight_norm:
                if isinstance(layer, nn.Sequential):
                    layer[0] = nn.utils.weight_norm(lin)
                elif isinstance(layer, nn.Linear):
                    layer = nn.utils.weight_norm(lin)


class OffsetDecoder(nn.Module):
    """

    Same architecture with ShapeDecoder in POP (https://github.com/qianlim/POP).

    """
    def __init__(self, in_size, hsize = 256, actv_fn='softplus'):
        self.hsize = hsize
        super(OffsetDecoder, self).__init__()
        self.conv1 = torch.nn.Conv1d(in_size, self.hsize, 1)
        self.conv2 = torch.nn.Conv1d(self.hsize, self.hsize, 1)
        self.conv3 = torch.nn.Conv1d(self.hsize, self.hsize, 1)
        self.conv4 = torch.nn.Conv1d(self.hsize, self.hsize, 1)
        self.conv5 = torch.nn.Conv1d(self.hsize+in_size, self.hsize, 1)
        self.conv6 = torch.nn.Conv1d(self.hsize, self.hsize, 1)
        self.conv7 = torch.nn.Conv1d(self.hsize, self.hsize, 1)
        self.conv8 = torch.nn.Conv1d(self.hsize, 3, 1)
        nn.init.uniform_(self.conv8.weight, -1e-5, 1e-5)
        nn.init.constant_(self.conv8.bias, 0.)

        self.bn1 = torch.nn.BatchNorm1d(self.hsize)
        self.bn2 = torch.nn.BatchNorm1d(self.hsize)
        self.bn3 = torch.nn.BatchNorm1d(self.hsize)
        self.bn4 = torch.nn.BatchNorm1d(self.hsize)

        self.bn5 = torch.nn.BatchNorm1d(self.hsize)
        self.bn6 = torch.nn.BatchNorm1d(self.hsize)
        self.bn7 = torch.nn.BatchNorm1d(self.hsize)

        self.actv_fn = nn.ReLU() if actv_fn=='relu' else nn.Softplus()

    def forward(self, x):
        x1 = self.actv_fn(self.bn1(self.conv1(x)))
        x2 = self.actv_fn(self.bn2(self.conv2(x1)))
        x3 = self.actv_fn(self.bn3(self.conv3(x2)))
        x4 = self.actv_fn(self.bn4(self.conv4(x3)))
        x5 = self.actv_fn(self.bn5(self.conv5(torch.cat([x,x4],dim=1))))

        # position pred
        x6 = self.actv_fn(self.bn6(self.conv6(x5)))
        x7 = self.actv_fn(self.bn7(self.conv7(x6)))
        x8 = self.conv8(x7)

        return x8

    def forward_wo_bn(self, x):
        x1 = self.actv_fn(self.conv1(x))
        x2 = self.actv_fn(self.conv2(x1))
        x3 = self.actv_fn(self.conv3(x2))
        x4 = self.actv_fn(self.conv4(x3))
        x5 = self.actv_fn(self.conv5(torch.cat([x,x4],dim=1)))

        # position pred
        x6 = self.actv_fn(self.conv6(x5))
        x7 = self.actv_fn(self.conv7(x6))
        x8 = self.conv8(x7)

        return x8


class ShapeDecoder(nn.Module):
    '''

    The "Shape Decoder" in the POP paper Fig. 2. The same as the "shared MLP" in the SCALE paper.

    - with skip connection from the input features to the 4th layer's output features (like DeepSDF)

    - branches out at the second-to-last layer, one branch for position pred, one for normal pred

    '''
    def __init__(self, in_size, hsize = 256, actv_fn='softplus'):
        self.hsize = hsize
        super(ShapeDecoder, self).__init__()
        self.conv1 = torch.nn.Conv1d(in_size, self.hsize, 1)
        self.conv2 = torch.nn.Conv1d(self.hsize, self.hsize, 1)
        self.conv3 = torch.nn.Conv1d(self.hsize, self.hsize, 1)
        self.conv4 = torch.nn.Conv1d(self.hsize, self.hsize, 1)
        self.conv5 = torch.nn.Conv1d(self.hsize+in_size, self.hsize, 1)
        self.conv6 = torch.nn.Conv1d(self.hsize, self.hsize, 1)
        self.conv7 = torch.nn.Conv1d(self.hsize, self.hsize, 1)
        self.conv8 = torch.nn.Conv1d(self.hsize, 3, 1)

        self.conv6N = torch.nn.Conv1d(self.hsize, self.hsize, 1)
        self.conv7N = torch.nn.Conv1d(self.hsize, self.hsize, 1)
        self.conv8N = torch.nn.Conv1d(self.hsize, 3, 1)

        self.bn1 = torch.nn.BatchNorm1d(self.hsize)
        self.bn2 = torch.nn.BatchNorm1d(self.hsize)
        self.bn3 = torch.nn.BatchNorm1d(self.hsize)
        self.bn4 = torch.nn.BatchNorm1d(self.hsize)

        self.bn5 = torch.nn.BatchNorm1d(self.hsize)
        self.bn6 = torch.nn.BatchNorm1d(self.hsize)
        self.bn7 = torch.nn.BatchNorm1d(self.hsize)

        self.bn6N = torch.nn.BatchNorm1d(self.hsize)
        self.bn7N = torch.nn.BatchNorm1d(self.hsize)

        self.actv_fn = nn.ReLU() if actv_fn=='relu' else nn.Softplus()

        # init last layer
        nn.init.uniform_(self.conv8.weight, -1e-5, 1e-5)
        nn.init.constant_(self.conv8.bias, 0)

    def forward(self, x):
        x1 = self.actv_fn(self.bn1(self.conv1(x)))
        x2 = self.actv_fn(self.bn2(self.conv2(x1)))
        x3 = self.actv_fn(self.bn3(self.conv3(x2)))
        x4 = self.actv_fn(self.bn4(self.conv4(x3)))
        x5 = self.actv_fn(self.bn5(self.conv5(torch.cat([x,x4],dim=1))))

        # position pred
        x6 = self.actv_fn(self.bn6(self.conv6(x5)))
        x7 = self.actv_fn(self.bn7(self.conv7(x6)))
        x8 = self.conv8(x7)

        # normals pred
        xN6 = self.actv_fn(self.bn6N(self.conv6N(x5)))
        xN7 = self.actv_fn(self.bn7N(self.conv7N(xN6)))
        xN8 = self.conv8N(xN7)

        return x8, xN8


class MLPwoWeight(object):
    def __init__(self,

                 in_channels,

                 out_channels,

                 inter_channels,

                 res_layers = [],

                 nlactv = nn.ReLU(),

                 last_op = None):
        super(MLPwoWeight, self).__init__()

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.all_channels = [in_channels] + inter_channels + [out_channels]
        self.res_layers = res_layers

        self.nlactv = nlactv
        self.last_op = last_op

        self.param_num = 0
        for i in range(len(self.all_channels) - 1):
            in_ch = self.all_channels[i]
            if i in self.res_layers:
                in_ch += self.in_channels
            out_ch = self.all_channels[i + 1]
            self.param_num += (in_ch * out_ch + out_ch)
        self.param_num_per_group = self.param_num

    def forward(self, x, params):
        """

        :param x: (batch_size, point_num, in_channels)

        :param params: (param_num, )

        :return: (batch_size, point_num, out_channels)

        """
        x = x.permute(0, 2, 1)  # (B, C, N)
        tmpx = x

        param_id = 0
        for i in range(len(self.all_channels) - 1):
            in_ch = self.all_channels[i]
            if i in self.res_layers:
                in_ch += self.in_channels
                x = torch.cat([x, tmpx], 1)
            out_ch = self.all_channels[i + 1]

            weight_len = out_ch * in_ch
            weight = params[param_id: param_id + weight_len].reshape(out_ch, in_ch, 1)
            param_id += weight_len

            bias_len = out_ch
            bias = params[param_id: param_id + bias_len]
            param_id += bias_len

            x = F.conv1d(x, weight, bias)
            if i < len(self.all_channels) - 2:
                x = self.nlactv(x)

        if self.last_op is not None:
            x = self.last_op(x)
        return x.permute(0, 2, 1)

    def __repr__(self):
        main_str = self.__class__.__name__ + '(\n'
        for i in range(len(self.all_channels) - 1):
            main_str += '\tF.conv1d(in_features=%d, out_features=%d, bias=True)\n' % (self.all_channels[i], self.all_channels[i + 1])
        main_str += '\tnlactv: %s\n' % self.nlactv.__repr__()
        main_str += ')'
        return main_str


class ParallelMLPwoWeight(object):
    def __init__(self,

                 in_channels,

                 out_channels,

                 inter_channels,

                 group_num = 1,

                 res_layers = [],

                 nlactv = nn.ReLU(),

                 last_op = None):
        super(ParallelMLPwoWeight, self).__init__()

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.all_channels = [in_channels] + inter_channels + [out_channels]
        self.res_layers = res_layers
        self.group_num = group_num

        self.nlactv = nlactv
        self.last_op = last_op

        self.param_num = 0
        for i in range(len(self.all_channels) - 1):
            in_ch = self.all_channels[i]
            if i in self.res_layers:
                in_ch += self.in_channels
            out_ch = self.all_channels[i + 1]
            self.param_num += (in_ch * out_ch + out_ch) * self.group_num
        self.param_num_per_group = self.param_num // self.group_num

    def forward(self, x, params):
        """

        :param x: (batch_size, group_num, point_num, in_channels)

        :param params: (group_num, param_num)

        :return: (batch_size, group_num, point_num, out_channels)

        """
        batch_size, group_num, point_num, in_channels = x.shape
        assert group_num == self.group_num and in_channels == self.in_channels
        x = x.permute(0, 1, 3, 2)  # (B, G, C, N)
        x = x.reshape(batch_size, group_num * in_channels, point_num)
        tmpx = x

        param_id = 0
        for i in range(len(self.all_channels) - 1):
            in_ch = self.all_channels[i]
            if i in self.res_layers:
                in_ch += self.in_channels
                x = parallel_concat([x, tmpx], group_num)
            out_ch = self.all_channels[i + 1]

            weight_len = out_ch * in_ch
            weight = params[:, param_id: param_id + weight_len].reshape(group_num * out_ch, in_ch, 1)
            param_id += weight_len

            bias_len = out_ch
            bias = params[:, param_id: param_id + bias_len].reshape(group_num * out_ch)
            param_id += bias_len

            x = F.conv1d(x, weight, bias, groups = group_num)
            if i < len(self.all_channels) - 2:
                x = self.nlactv(x)

        if self.last_op is not None:
            x = self.last_op(x)
        x = x.reshape(batch_size, group_num, self.out_channels, point_num)
        return x.permute(0, 1, 3, 2)

    def __repr__(self):
        main_str = self.__class__.__name__ + '(\n'
        main_str += '\tgroup_num: %d\n' % self.group_num
        for i in range(len(self.all_channels) - 1):
            main_str += '\tF.conv1d(in_features=%d, out_features=%d, bias=True)\n' % (self.all_channels[i], self.all_channels[i + 1])
        main_str += '\tnlactv: %s\n' % self.nlactv.__repr__()
        main_str += ')'
        return main_str