File size: 19,930 Bytes
ec9a6bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
import torch
import torch.nn as nn
import numpy as np
import pytorch3d.ops
import pytorch3d.transforms
import trimesh

import config
from network.mlp import MLPLinear, SdfMLP
from network.density import LaplaceDensity
from network.volume import CanoBlendWeightVolume
from network.hand_avatar import HandAvatar
from utils.embedder import get_embedder
import utils.nerf_util as nerf_util
import utils.smpl_util as smpl_util
import utils.geo_util as geo_util
from utils.posevocab_custom_ops.near_far_smpl import near_far_smpl
from utils.posevocab_custom_ops.nearest_face import nearest_face_pytorch3d
from utils.knn import knn_gather
import root_finding


class TemplateNet(nn.Module):
    def __init__(self, opt):
        super(TemplateNet, self).__init__()
        self.opt = opt

        self.pos_embedder, self.pos_dim = get_embedder(opt['multires'], 3)

        # canonical blend weight volume
        self.cano_weight_volume = CanoBlendWeightVolume(config.opt['train']['data']['data_dir'] + '/cano_weight_volume.npz')

        self.pose_feat_dim = 0

        """ geometry networks """
        geo_mlp_opt = {
            'in_channels': self.pos_dim + self.pose_feat_dim,
            'out_channels': 256 + 1,
            'inter_channels': [512, 256, 256, 256, 256, 256],
            'nlactv': nn.Softplus(beta = 100),
            'res_layers': [4],
            'geometric_init': True,
            'bias': 0.7,
            'weight_norm': True
        }
        self.geo_mlp = SdfMLP(**geo_mlp_opt)

        """ texture networks """
        if self.opt['use_viewdir']:
            self.viewdir_embedder, self.viewdir_dim = get_embedder(self.opt['multires_viewdir'], 3)
        else:
            self.viewdir_embedder, self.viewdir_dim = None, 0
        tex_mlp_opt = {
            'in_channels': 256 + self.viewdir_dim,
            'out_channels': 3,
            'inter_channels': [256, 256, 256],
            'nlactv': nn.ReLU(),
            'last_op': nn.Sigmoid()
        }
        self.tex_mlp = MLPLinear(**tex_mlp_opt)

        print('# MLPs: ')
        print(self.geo_mlp)
        print(self.tex_mlp)

        # sdf2density
        self.density_func = LaplaceDensity(params_init = {'beta': 0.01})

        # hand avatars
        self.with_hand = self.opt.get('with_hand', False)
        self.left_hand = HandAvatar()
        self.right_hand = HandAvatar()

        # for root finding
        from network.volume import compute_gradient_volume
        if self.opt.get('volume_type', 'diff') == 'diff':
            self.weight_volume = self.cano_weight_volume.diff_weight_volume[0].permute(1, 2, 3, 0).contiguous()
        else:
            self.weight_volume = self.cano_weight_volume.ori_weight_volume[0].permute(1, 2, 3, 0).contiguous()
        self.grad_volume = compute_gradient_volume(self.weight_volume.permute(3, 0, 1, 2), self.cano_weight_volume.voxel_size).permute(2, 3, 4, 0, 1)\
            .reshape(self.cano_weight_volume.res_x, self.cano_weight_volume.res_y, self.cano_weight_volume.res_z, -1).contiguous()
        self.res = torch.tensor([self.cano_weight_volume.res_x, self.cano_weight_volume.res_y, self.cano_weight_volume.res_z], dtype = torch.int32, device = config.device)

        self._initialize_hands()

    def _initialize_hands(self):
        smplx_lhand_to_mano_rhand_data = np.load(config.PROJ_DIR + '/smpl_files/mano/smplx_lhand_to_mano_rhand.npz', allow_pickle = True)
        smplx_rhand_to_mano_rhand_data = np.load(config.PROJ_DIR + '/smpl_files/mano/smplx_rhand_to_mano_rhand.npz', allow_pickle = True)
        smpl_lhand_vert_id = np.copy(smplx_lhand_to_mano_rhand_data['smpl_vert_id_to_mano'])
        smpl_rhand_vert_id = np.copy(smplx_rhand_to_mano_rhand_data['smpl_vert_id_to_mano'])
        self.smpl_lhand_vert_id = torch.from_numpy(smpl_lhand_vert_id).to(config.device)
        self.smpl_rhand_vert_id = torch.from_numpy(smpl_rhand_vert_id).to(config.device)
        self.smpl_hands_vert_id = torch.cat([self.smpl_lhand_vert_id, self.smpl_rhand_vert_id], 0)
        mano_face_closed = np.loadtxt(config.PROJ_DIR + '/smpl_files/mano/mano_face_close.txt').astype(np.int64)
        self.mano_face_closed = torch.from_numpy(mano_face_closed).to(config.device)
        self.mano_face_closed_2hand = torch.cat([self.mano_face_closed[:, [2, 1, 0]], self.mano_face_closed + self.smpl_lhand_vert_id.shape[0]], 0)

    def forward_cano_body_nerf(self, xyz, viewdirs, pose, compute_grad = False):
        """

        :param xyz: (B, N, 3)

        :param viewdirs: (B, N, 3)

        :param pose: (B, pose_dim)

        :param compute_grad: whether computing gradient w.r.t xyz

        :return:

        """
        if compute_grad:
            xyz.requires_grad_()
        # pose_feat = self.pose_feat[None, None].expand(xyz.shape[0], xyz.shape[1], -1)
        # pose_feat = torch.cat([self.pos_embedder(xyz), pose_feat], -1)
        pose_feat = self.pos_embedder(xyz)
        geo_feat = self.geo_mlp(pose_feat)
        sdf, geo_feat = torch.split(geo_feat, [1, geo_feat.shape[-1] - 1], -1)

        if self.viewdir_embedder is not None:
            if viewdirs is None:
                viewdirs = torch.zeros_like(xyz)
            geo_feat = torch.cat([geo_feat, self.viewdir_embedder(viewdirs)], -1)
        color = self.tex_mlp(geo_feat)

        density = self.density_func(sdf)

        ret = {
            'sdf': -sdf,  # assume outside is negative, inside is positive
            'density': density,
            'color': color,
            'cano_xyz': xyz.detach()
        }

        if compute_grad:
            d_output = torch.ones_like(sdf, requires_grad = False, device = sdf.device)
            normal = torch.autograd.grad(outputs = sdf,
                                         inputs = xyz,
                                         grad_outputs = d_output,
                                         create_graph = self.training,
                                         retain_graph = self.training,
                                         only_inputs = True)[0]
            ret.update({
                'normal': normal
            })
        return ret

    def forward_cano_hand_nerf(self, xyz, sdf, viewdirs, hand_pose, module = 'left_hand'):
        net = self.__getattr__(module)
        return net(xyz, sdf, viewdirs, hand_pose)

    def fuse_hands(self, body_ret, posed_xyz, view_dirs, batch, space = 'live'):
        # get hand correspondences
        batch_size, n_pts = posed_xyz.shape[:2]

        def process_one_hand(side = 'left'):
            hand_v = batch['%s_live_mano_v' % side] if space == 'live' else batch['%s_cano_mano_v' % side]
            hand_n = batch['%s_live_mano_n' % side] if space == 'live' else batch['%s_cano_mano_n' % side]
            hand_f = self.mano_face_closed[:, [2, 1, 0]] if side == 'left' else self.mano_face_closed

            dists, face_indices, bc_coords = nearest_face_pytorch3d(posed_xyz, hand_v, hand_f)
            face_vertex_ids = torch.gather(hand_f[None].expand(batch_size, -1, -1), 1, face_indices[:, :, None].long().expand(-1, -1, 3))  # (B, N, 3)

            cano_hand_v = geo_util.normalize_vert_bbox(batch['%s_cano_mano_v' % side], dim = 1, per_axis = True)

            face_cano_mano_v = knn_gather(cano_hand_v, face_vertex_ids)
            pts_cano_mano_v = (bc_coords[..., None] * face_cano_mano_v).sum(2)

            face_live_mano_v = knn_gather(hand_v, face_vertex_ids)
            pts_live_mano_v = (bc_coords[..., None] * face_live_mano_v).sum(2)

            # face_normal = torch.cross(face_live_smpl_v[:, :, 1] - face_live_smpl_v[:, :, 0], face_live_smpl_v[:, :, 2] - face_live_smpl_v[:, :, 0])
            face_live_mano_n = knn_gather(hand_n, face_vertex_ids)
            pts_live_mano_n = (bc_coords[..., None] * face_live_mano_n).sum(2)

            pts_smpl_sdf = -torch.sign(torch.einsum('bni,bni->bn', pts_live_mano_n, posed_xyz - pts_live_mano_v)) * dists

            return pts_cano_mano_v, pts_smpl_sdf.unsqueeze(-1)

        left_cano_mano_v, left_mano_sdf = process_one_hand('left')
        right_cano_mano_v, right_mano_sdf = process_one_hand('right')

        # fuse
        zero_hand_pose = torch.zeros((1, 15*3)).to(left_cano_mano_v)
        color_lhand = self.forward_cano_hand_nerf(left_cano_mano_v, left_mano_sdf, view_dirs, zero_hand_pose, module = 'left_hand')
        color_rhand = self.forward_cano_hand_nerf(right_cano_mano_v, right_mano_sdf, view_dirs, zero_hand_pose, module = 'right_hand')

        # calculate the blending weights for blending the outputs of body network and hand networks
        # wl = torch.sigmoid(1000 * (left_mano_sdf + 0.1)) * torch.sigmoid(25 * (left_cano_mano_v[..., 0:1] + 0.8))
        # wr = torch.sigmoid(1000 * (right_mano_sdf + 0.1)) * torch.sigmoid(-25 * (right_cano_mano_v[..., 0:1] - 0.8))
        cano_xyz = body_ret['cano_xyz']
        wl = torch.sigmoid(25 * (geo_util.normalize_vert_bbox(batch['left_cano_mano_v'], attris = cano_xyz, dim = 1, per_axis = True)[..., 0:1] + 0.8))
        wr = torch.sigmoid(-25 * (geo_util.normalize_vert_bbox(batch['right_cano_mano_v'], attris = cano_xyz, dim = 1, per_axis = True)[..., 0:1] - 0.8))
        wl[cano_xyz[..., 1] < batch['cano_smpl_center'][0, 1]] = 0.
        wr[cano_xyz[..., 1] < batch['cano_smpl_center'][0, 1]] = 0.

        s = torch.maximum(wl + wr, torch.ones_like(wl))
        wl, wr = wl / s, wr / s

        # blend the outputs of body network and hand networks
        w = wl + wr
        # factor = 10
        # left_mano_sdf *= factor
        # right_mano_sdf *= factor
        body_ret['sdf'] = wl * left_mano_sdf + wr * right_mano_sdf + (1.0 - w) * body_ret['sdf']
        body_ret['color'] = wl * color_lhand + wr * color_rhand + (1.0 - w) * body_ret['color']

        body_ret['density'] = self.density_func(-body_ret['sdf'])

    def forward_cano_radiance_field(self, xyz, view_dirs, batch):
        body_ret = self.forward_cano_body_nerf(xyz, view_dirs, None, compute_grad = self.training)

        return body_ret

    def transform_cano2live(self, cano_pts, batch, normals = None, near_thres = 0.08):
        cano2live_jnt_mats = batch['cano2live_jnt_mats'].clone()
        if not self.with_hand:
            # make sure the hand transformation is totally rigid
            cano2live_jnt_mats[:, 25: 40] = cano2live_jnt_mats[:, 20: 21]
            cano2live_jnt_mats[:, 40: 55] = cano2live_jnt_mats[:, 21: 22]

        pts_w = self.cano_weight_volume.forward_weight(cano_pts)
        pt_mats = torch.einsum('bnj,bjxy->bnxy', pts_w, cano2live_jnt_mats)
        posed_pts = torch.einsum('bnxy,bny->bnx', pt_mats[..., :3, :3], cano_pts) + pt_mats[..., :3, 3]

        if normals is None:
            return posed_pts
        else:
            posed_normals = torch.einsum('bnxy,bny->bnx', pt_mats[..., :3, :3], normals)
            return posed_pts, posed_normals

    def transform_live2cano(self, posed_pts, batch, normals = None, near_thres = 0.08):
        cano2live_jnt_mats = batch['cano2live_jnt_mats'].clone()
        if not self.with_hand:
            cano2live_jnt_mats[:, 25: 40] = cano2live_jnt_mats[:, 20: 21]
            cano2live_jnt_mats[:, 40: 55] = cano2live_jnt_mats[:, 21: 22]

        """ live_pts -> cano_pts """
        batch_size, n_pts = posed_pts.shape[:2]
        with torch.no_grad():
            if 'live_mesh_v' in batch:
            # if False:
                tar_v = batch['live_mesh_v']
                tar_f = batch['live_mesh_f']
                tar_lbs = batch['live_mesh_lbs']
                pts_w, near_flag = smpl_util.calc_blending_weight(posed_pts, tar_v, tar_f, tar_lbs, near_thres, method = 'NN')
            else:
                tar_v = batch['live_smpl_v']
                tar_f = batch['smpl_faces']
                tar_lbs = None
                pts_w, near_flag = smpl_util.calc_blending_weight(posed_pts, tar_v, tar_f, tar_lbs, near_thres, method = 'barycentric')

            pt_mats = torch.einsum('bnj,bjxy->bnxy', pts_w, cano2live_jnt_mats)
            pt_mats = torch.linalg.inv(pt_mats)
            cano_pts = torch.einsum('bnxy,bny->bnx', pt_mats[..., :3, :3], posed_pts) + pt_mats[..., :3, 3]
            # cano_pts_bk = cano_pts.detach().clone()

            if normals is not None:
                cano_normals = torch.einsum('bnxy,bny->bnx', pt_mats[..., :3, :3], normals)

        if self.opt['use_root_finding']:
            argmax_lbs = torch.argmax(pts_w, -1)
            nonopt_bone_ids = [7, 8, 10, 11]
            nonopt_pts_flag = torch.zeros((batch_size, n_pts), dtype = torch.bool).to(argmax_lbs.device)
            for i in nonopt_bone_ids:
                nonopt_pts_flag = torch.logical_or(nonopt_pts_flag, argmax_lbs == i)
            root_finding_flag = torch.logical_not(nonopt_pts_flag)
            if root_finding_flag.any():
                cano_pts_ = cano_pts[root_finding_flag].unsqueeze(0)
                posed_pts_ = posed_pts[root_finding_flag].unsqueeze(0)
                if not cano_pts_.is_contiguous():
                    cano_pts_ = cano_pts_.contiguous()
                if not posed_pts_.is_contiguous():
                    posed_pts_ = posed_pts_.contiguous()
                root_finding.root_finding(
                    self.weight_volume,
                    self.grad_volume,
                    posed_pts_,
                    cano_pts_,
                    cano2live_jnt_mats,
                    self.cano_weight_volume.volume_bounds,
                    self.res,
                    cano_pts_,
                    0.1,
                    10
                )
                cano_pts[root_finding_flag] = cano_pts_[0]

        if normals is None:
            return cano_pts, near_flag
        else:
            return cano_pts, cano_normals, near_flag

    def render(self, batch, chunk_size = 2048, depth_guided_sampling = None, space = 'live', white_bkgd = False):
        ray_o = batch['ray_o']
        ray_d = batch['ray_d']
        near = batch['near']
        far = batch['far']

        if depth_guided_sampling['flag']:
            print('# depth-guided sampling')
            valid_dist_flag = batch['dist'] > 1e-6
            dist = batch['dist'][valid_dist_flag]
            near_dist = depth_guided_sampling['near_sur_dist']
            far_dist = depth_guided_sampling['near_sur_dist']
            near[valid_dist_flag] = dist - near_dist
            far[valid_dist_flag] = dist + far_dist
            N_ray_samples = depth_guided_sampling['N_ray_samples']
        else:
            if depth_guided_sampling.get('type', 'smpl') == 'smpl':
                print('# smpl-guided sampling')
                valid_dist_flag = torch.ones_like(near, dtype = bool)
                near, far, intersect_flag = near_far_smpl(batch['live_smpl_v'][0], ray_o[0], ray_d[0])
                near[~intersect_flag] = batch['near'][0][~intersect_flag]
                far[~intersect_flag] = batch['far'][0][~intersect_flag]
                near = near.unsqueeze(0)
                far = far.unsqueeze(0)
                N_ray_samples = 64
            elif depth_guided_sampling.get('type', 'smpl') == 'uniform':
                print('# uniform sampling')
                valid_dist_flag = torch.ones_like(near, dtype = bool)
                N_ray_samples = 64

        if self.training:
            chunk_size = batch['ray_o'].shape[1]

        batch_size, n_pixels = ray_o.shape[:2]
        output_list = []
        for i in range(0, n_pixels, chunk_size):
            near_chunk = near[:, i: i + chunk_size]
            far_chunk = far[:, i: i + chunk_size]
            ray_o_chunk = ray_o[:, i: i + chunk_size]
            ray_d_chunk = ray_d[:, i: i + chunk_size]
            valid_dist_flag_chunk = valid_dist_flag[:, i: i + chunk_size]

            # sample points on each ray
            pts, z_vals = nerf_util.sample_pts_on_rays(ray_o_chunk, ray_d_chunk, near_chunk, far_chunk,
                                                       N_samples = N_ray_samples,
                                                       perturb = self.training,
                                                       depth_guided_mask = valid_dist_flag_chunk)

            # # debug: visualize pts
            # import trimesh
            # pts_trimesh = trimesh.PointCloud(pts[0].cpu().numpy().reshape(-1, 3))
            # pts_trimesh.export('./debug/sampled_pts_%s.obj' % 'training' if self.training else 'testing')
            # exit(1)

            # flat
            _, n_pixels_chunk, n_samples = pts.shape[:3]
            pts = pts.view(batch_size, n_pixels_chunk * n_samples, -1)
            dists = z_vals[..., 1:] - z_vals[..., :-1]
            dists = torch.cat([dists, dists[..., -1:]], -1)

            # query
            if space == 'live':
                cano_pts, near_flag = self.transform_live2cano(pts, batch)
            elif space == 'cano':
                cano_pts = pts
            else:
                raise ValueError('Invalid rendering space!')
            viewdirs = ray_d_chunk / torch.norm(ray_d_chunk, dim = -1, keepdim = True)
            viewdirs = viewdirs[:, :, None, :].expand(-1, -1, n_samples, -1).reshape(batch_size, n_pixels_chunk * n_samples, -1)
            # apply gaussian noise to avoid overfitting
            if self.training:
                with torch.no_grad():
                    noise = torch.randn_like(viewdirs) * 0.1
                viewdirs = viewdirs + noise
                viewdirs = viewdirs / torch.norm(viewdirs, dim = -1, keepdim = True)

            ret = self.forward_cano_radiance_field(cano_pts, viewdirs, batch)
            if self.with_hand:
                self.fuse_hands(ret, pts, viewdirs, batch, space)

            ret['color'] = ret['color'].view(batch_size, n_pixels_chunk, n_samples, -1)
            ret['density'] = ret['density'].view(batch_size, n_pixels_chunk, n_samples, -1)

            # integration
            alpha = 1. - torch.exp(-ret['density'] * dists[..., None])
            raw = torch.cat([ret['color'], alpha], dim = -1)
            rgb_map, disp_map, acc_map, weights, depth_map = nerf_util.raw2outputs(raw, z_vals, white_bkgd = white_bkgd)

            output_chunk = {
                'rgb_map': rgb_map,  # (batch_size, n_pixel_chunk, 3)
                'acc_map': acc_map
            }
            if 'normal' in ret:
                output_chunk.update({
                    'normal': ret['normal'].view(batch_size, n_pixels_chunk, -1, 3)
                })
            if 'tv_loss' in ret:
                output_chunk.update({
                    'tv_loss': ret['tv_loss'].view(1, 1, -1)
                })
            output_list.append(output_chunk)

        keys = output_list[0].keys()
        output_list = {k: torch.cat([r[k] for r in output_list], dim = 1) for k in keys}

        # processing for patch-based ray sampling
        if 'mask_within_patch' in batch:
            _, ray_num = batch['mask_within_patch'].shape
            rgb_map = torch.zeros((batch_size, ray_num, 3), dtype = torch.float32, device = config.device)
            acc_map = torch.zeros((batch_size, ray_num), dtype = torch.float32, device = config.device)
            rgb_map[batch['mask_within_patch']] = output_list['rgb_map'].reshape(-1, 3)
            acc_map[batch['mask_within_patch']] = output_list['acc_map'].reshape(-1)
            batch['color_gt'][~batch['mask_within_patch']] = 0.
            batch['mask_gt'][~batch['mask_within_patch']] = 0.
            output_list['rgb_map'] = rgb_map
            output_list['acc_map'] = acc_map

        return output_list