Spaces:
Runtime error
Runtime error
File size: 19,930 Bytes
ec9a6bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
import torch
import torch.nn as nn
import numpy as np
import pytorch3d.ops
import pytorch3d.transforms
import trimesh
import config
from network.mlp import MLPLinear, SdfMLP
from network.density import LaplaceDensity
from network.volume import CanoBlendWeightVolume
from network.hand_avatar import HandAvatar
from utils.embedder import get_embedder
import utils.nerf_util as nerf_util
import utils.smpl_util as smpl_util
import utils.geo_util as geo_util
from utils.posevocab_custom_ops.near_far_smpl import near_far_smpl
from utils.posevocab_custom_ops.nearest_face import nearest_face_pytorch3d
from utils.knn import knn_gather
import root_finding
class TemplateNet(nn.Module):
def __init__(self, opt):
super(TemplateNet, self).__init__()
self.opt = opt
self.pos_embedder, self.pos_dim = get_embedder(opt['multires'], 3)
# canonical blend weight volume
self.cano_weight_volume = CanoBlendWeightVolume(config.opt['train']['data']['data_dir'] + '/cano_weight_volume.npz')
self.pose_feat_dim = 0
""" geometry networks """
geo_mlp_opt = {
'in_channels': self.pos_dim + self.pose_feat_dim,
'out_channels': 256 + 1,
'inter_channels': [512, 256, 256, 256, 256, 256],
'nlactv': nn.Softplus(beta = 100),
'res_layers': [4],
'geometric_init': True,
'bias': 0.7,
'weight_norm': True
}
self.geo_mlp = SdfMLP(**geo_mlp_opt)
""" texture networks """
if self.opt['use_viewdir']:
self.viewdir_embedder, self.viewdir_dim = get_embedder(self.opt['multires_viewdir'], 3)
else:
self.viewdir_embedder, self.viewdir_dim = None, 0
tex_mlp_opt = {
'in_channels': 256 + self.viewdir_dim,
'out_channels': 3,
'inter_channels': [256, 256, 256],
'nlactv': nn.ReLU(),
'last_op': nn.Sigmoid()
}
self.tex_mlp = MLPLinear(**tex_mlp_opt)
print('# MLPs: ')
print(self.geo_mlp)
print(self.tex_mlp)
# sdf2density
self.density_func = LaplaceDensity(params_init = {'beta': 0.01})
# hand avatars
self.with_hand = self.opt.get('with_hand', False)
self.left_hand = HandAvatar()
self.right_hand = HandAvatar()
# for root finding
from network.volume import compute_gradient_volume
if self.opt.get('volume_type', 'diff') == 'diff':
self.weight_volume = self.cano_weight_volume.diff_weight_volume[0].permute(1, 2, 3, 0).contiguous()
else:
self.weight_volume = self.cano_weight_volume.ori_weight_volume[0].permute(1, 2, 3, 0).contiguous()
self.grad_volume = compute_gradient_volume(self.weight_volume.permute(3, 0, 1, 2), self.cano_weight_volume.voxel_size).permute(2, 3, 4, 0, 1)\
.reshape(self.cano_weight_volume.res_x, self.cano_weight_volume.res_y, self.cano_weight_volume.res_z, -1).contiguous()
self.res = torch.tensor([self.cano_weight_volume.res_x, self.cano_weight_volume.res_y, self.cano_weight_volume.res_z], dtype = torch.int32, device = config.device)
self._initialize_hands()
def _initialize_hands(self):
smplx_lhand_to_mano_rhand_data = np.load(config.PROJ_DIR + '/smpl_files/mano/smplx_lhand_to_mano_rhand.npz', allow_pickle = True)
smplx_rhand_to_mano_rhand_data = np.load(config.PROJ_DIR + '/smpl_files/mano/smplx_rhand_to_mano_rhand.npz', allow_pickle = True)
smpl_lhand_vert_id = np.copy(smplx_lhand_to_mano_rhand_data['smpl_vert_id_to_mano'])
smpl_rhand_vert_id = np.copy(smplx_rhand_to_mano_rhand_data['smpl_vert_id_to_mano'])
self.smpl_lhand_vert_id = torch.from_numpy(smpl_lhand_vert_id).to(config.device)
self.smpl_rhand_vert_id = torch.from_numpy(smpl_rhand_vert_id).to(config.device)
self.smpl_hands_vert_id = torch.cat([self.smpl_lhand_vert_id, self.smpl_rhand_vert_id], 0)
mano_face_closed = np.loadtxt(config.PROJ_DIR + '/smpl_files/mano/mano_face_close.txt').astype(np.int64)
self.mano_face_closed = torch.from_numpy(mano_face_closed).to(config.device)
self.mano_face_closed_2hand = torch.cat([self.mano_face_closed[:, [2, 1, 0]], self.mano_face_closed + self.smpl_lhand_vert_id.shape[0]], 0)
def forward_cano_body_nerf(self, xyz, viewdirs, pose, compute_grad = False):
"""
:param xyz: (B, N, 3)
:param viewdirs: (B, N, 3)
:param pose: (B, pose_dim)
:param compute_grad: whether computing gradient w.r.t xyz
:return:
"""
if compute_grad:
xyz.requires_grad_()
# pose_feat = self.pose_feat[None, None].expand(xyz.shape[0], xyz.shape[1], -1)
# pose_feat = torch.cat([self.pos_embedder(xyz), pose_feat], -1)
pose_feat = self.pos_embedder(xyz)
geo_feat = self.geo_mlp(pose_feat)
sdf, geo_feat = torch.split(geo_feat, [1, geo_feat.shape[-1] - 1], -1)
if self.viewdir_embedder is not None:
if viewdirs is None:
viewdirs = torch.zeros_like(xyz)
geo_feat = torch.cat([geo_feat, self.viewdir_embedder(viewdirs)], -1)
color = self.tex_mlp(geo_feat)
density = self.density_func(sdf)
ret = {
'sdf': -sdf, # assume outside is negative, inside is positive
'density': density,
'color': color,
'cano_xyz': xyz.detach()
}
if compute_grad:
d_output = torch.ones_like(sdf, requires_grad = False, device = sdf.device)
normal = torch.autograd.grad(outputs = sdf,
inputs = xyz,
grad_outputs = d_output,
create_graph = self.training,
retain_graph = self.training,
only_inputs = True)[0]
ret.update({
'normal': normal
})
return ret
def forward_cano_hand_nerf(self, xyz, sdf, viewdirs, hand_pose, module = 'left_hand'):
net = self.__getattr__(module)
return net(xyz, sdf, viewdirs, hand_pose)
def fuse_hands(self, body_ret, posed_xyz, view_dirs, batch, space = 'live'):
# get hand correspondences
batch_size, n_pts = posed_xyz.shape[:2]
def process_one_hand(side = 'left'):
hand_v = batch['%s_live_mano_v' % side] if space == 'live' else batch['%s_cano_mano_v' % side]
hand_n = batch['%s_live_mano_n' % side] if space == 'live' else batch['%s_cano_mano_n' % side]
hand_f = self.mano_face_closed[:, [2, 1, 0]] if side == 'left' else self.mano_face_closed
dists, face_indices, bc_coords = nearest_face_pytorch3d(posed_xyz, hand_v, hand_f)
face_vertex_ids = torch.gather(hand_f[None].expand(batch_size, -1, -1), 1, face_indices[:, :, None].long().expand(-1, -1, 3)) # (B, N, 3)
cano_hand_v = geo_util.normalize_vert_bbox(batch['%s_cano_mano_v' % side], dim = 1, per_axis = True)
face_cano_mano_v = knn_gather(cano_hand_v, face_vertex_ids)
pts_cano_mano_v = (bc_coords[..., None] * face_cano_mano_v).sum(2)
face_live_mano_v = knn_gather(hand_v, face_vertex_ids)
pts_live_mano_v = (bc_coords[..., None] * face_live_mano_v).sum(2)
# face_normal = torch.cross(face_live_smpl_v[:, :, 1] - face_live_smpl_v[:, :, 0], face_live_smpl_v[:, :, 2] - face_live_smpl_v[:, :, 0])
face_live_mano_n = knn_gather(hand_n, face_vertex_ids)
pts_live_mano_n = (bc_coords[..., None] * face_live_mano_n).sum(2)
pts_smpl_sdf = -torch.sign(torch.einsum('bni,bni->bn', pts_live_mano_n, posed_xyz - pts_live_mano_v)) * dists
return pts_cano_mano_v, pts_smpl_sdf.unsqueeze(-1)
left_cano_mano_v, left_mano_sdf = process_one_hand('left')
right_cano_mano_v, right_mano_sdf = process_one_hand('right')
# fuse
zero_hand_pose = torch.zeros((1, 15*3)).to(left_cano_mano_v)
color_lhand = self.forward_cano_hand_nerf(left_cano_mano_v, left_mano_sdf, view_dirs, zero_hand_pose, module = 'left_hand')
color_rhand = self.forward_cano_hand_nerf(right_cano_mano_v, right_mano_sdf, view_dirs, zero_hand_pose, module = 'right_hand')
# calculate the blending weights for blending the outputs of body network and hand networks
# wl = torch.sigmoid(1000 * (left_mano_sdf + 0.1)) * torch.sigmoid(25 * (left_cano_mano_v[..., 0:1] + 0.8))
# wr = torch.sigmoid(1000 * (right_mano_sdf + 0.1)) * torch.sigmoid(-25 * (right_cano_mano_v[..., 0:1] - 0.8))
cano_xyz = body_ret['cano_xyz']
wl = torch.sigmoid(25 * (geo_util.normalize_vert_bbox(batch['left_cano_mano_v'], attris = cano_xyz, dim = 1, per_axis = True)[..., 0:1] + 0.8))
wr = torch.sigmoid(-25 * (geo_util.normalize_vert_bbox(batch['right_cano_mano_v'], attris = cano_xyz, dim = 1, per_axis = True)[..., 0:1] - 0.8))
wl[cano_xyz[..., 1] < batch['cano_smpl_center'][0, 1]] = 0.
wr[cano_xyz[..., 1] < batch['cano_smpl_center'][0, 1]] = 0.
s = torch.maximum(wl + wr, torch.ones_like(wl))
wl, wr = wl / s, wr / s
# blend the outputs of body network and hand networks
w = wl + wr
# factor = 10
# left_mano_sdf *= factor
# right_mano_sdf *= factor
body_ret['sdf'] = wl * left_mano_sdf + wr * right_mano_sdf + (1.0 - w) * body_ret['sdf']
body_ret['color'] = wl * color_lhand + wr * color_rhand + (1.0 - w) * body_ret['color']
body_ret['density'] = self.density_func(-body_ret['sdf'])
def forward_cano_radiance_field(self, xyz, view_dirs, batch):
body_ret = self.forward_cano_body_nerf(xyz, view_dirs, None, compute_grad = self.training)
return body_ret
def transform_cano2live(self, cano_pts, batch, normals = None, near_thres = 0.08):
cano2live_jnt_mats = batch['cano2live_jnt_mats'].clone()
if not self.with_hand:
# make sure the hand transformation is totally rigid
cano2live_jnt_mats[:, 25: 40] = cano2live_jnt_mats[:, 20: 21]
cano2live_jnt_mats[:, 40: 55] = cano2live_jnt_mats[:, 21: 22]
pts_w = self.cano_weight_volume.forward_weight(cano_pts)
pt_mats = torch.einsum('bnj,bjxy->bnxy', pts_w, cano2live_jnt_mats)
posed_pts = torch.einsum('bnxy,bny->bnx', pt_mats[..., :3, :3], cano_pts) + pt_mats[..., :3, 3]
if normals is None:
return posed_pts
else:
posed_normals = torch.einsum('bnxy,bny->bnx', pt_mats[..., :3, :3], normals)
return posed_pts, posed_normals
def transform_live2cano(self, posed_pts, batch, normals = None, near_thres = 0.08):
cano2live_jnt_mats = batch['cano2live_jnt_mats'].clone()
if not self.with_hand:
cano2live_jnt_mats[:, 25: 40] = cano2live_jnt_mats[:, 20: 21]
cano2live_jnt_mats[:, 40: 55] = cano2live_jnt_mats[:, 21: 22]
""" live_pts -> cano_pts """
batch_size, n_pts = posed_pts.shape[:2]
with torch.no_grad():
if 'live_mesh_v' in batch:
# if False:
tar_v = batch['live_mesh_v']
tar_f = batch['live_mesh_f']
tar_lbs = batch['live_mesh_lbs']
pts_w, near_flag = smpl_util.calc_blending_weight(posed_pts, tar_v, tar_f, tar_lbs, near_thres, method = 'NN')
else:
tar_v = batch['live_smpl_v']
tar_f = batch['smpl_faces']
tar_lbs = None
pts_w, near_flag = smpl_util.calc_blending_weight(posed_pts, tar_v, tar_f, tar_lbs, near_thres, method = 'barycentric')
pt_mats = torch.einsum('bnj,bjxy->bnxy', pts_w, cano2live_jnt_mats)
pt_mats = torch.linalg.inv(pt_mats)
cano_pts = torch.einsum('bnxy,bny->bnx', pt_mats[..., :3, :3], posed_pts) + pt_mats[..., :3, 3]
# cano_pts_bk = cano_pts.detach().clone()
if normals is not None:
cano_normals = torch.einsum('bnxy,bny->bnx', pt_mats[..., :3, :3], normals)
if self.opt['use_root_finding']:
argmax_lbs = torch.argmax(pts_w, -1)
nonopt_bone_ids = [7, 8, 10, 11]
nonopt_pts_flag = torch.zeros((batch_size, n_pts), dtype = torch.bool).to(argmax_lbs.device)
for i in nonopt_bone_ids:
nonopt_pts_flag = torch.logical_or(nonopt_pts_flag, argmax_lbs == i)
root_finding_flag = torch.logical_not(nonopt_pts_flag)
if root_finding_flag.any():
cano_pts_ = cano_pts[root_finding_flag].unsqueeze(0)
posed_pts_ = posed_pts[root_finding_flag].unsqueeze(0)
if not cano_pts_.is_contiguous():
cano_pts_ = cano_pts_.contiguous()
if not posed_pts_.is_contiguous():
posed_pts_ = posed_pts_.contiguous()
root_finding.root_finding(
self.weight_volume,
self.grad_volume,
posed_pts_,
cano_pts_,
cano2live_jnt_mats,
self.cano_weight_volume.volume_bounds,
self.res,
cano_pts_,
0.1,
10
)
cano_pts[root_finding_flag] = cano_pts_[0]
if normals is None:
return cano_pts, near_flag
else:
return cano_pts, cano_normals, near_flag
def render(self, batch, chunk_size = 2048, depth_guided_sampling = None, space = 'live', white_bkgd = False):
ray_o = batch['ray_o']
ray_d = batch['ray_d']
near = batch['near']
far = batch['far']
if depth_guided_sampling['flag']:
print('# depth-guided sampling')
valid_dist_flag = batch['dist'] > 1e-6
dist = batch['dist'][valid_dist_flag]
near_dist = depth_guided_sampling['near_sur_dist']
far_dist = depth_guided_sampling['near_sur_dist']
near[valid_dist_flag] = dist - near_dist
far[valid_dist_flag] = dist + far_dist
N_ray_samples = depth_guided_sampling['N_ray_samples']
else:
if depth_guided_sampling.get('type', 'smpl') == 'smpl':
print('# smpl-guided sampling')
valid_dist_flag = torch.ones_like(near, dtype = bool)
near, far, intersect_flag = near_far_smpl(batch['live_smpl_v'][0], ray_o[0], ray_d[0])
near[~intersect_flag] = batch['near'][0][~intersect_flag]
far[~intersect_flag] = batch['far'][0][~intersect_flag]
near = near.unsqueeze(0)
far = far.unsqueeze(0)
N_ray_samples = 64
elif depth_guided_sampling.get('type', 'smpl') == 'uniform':
print('# uniform sampling')
valid_dist_flag = torch.ones_like(near, dtype = bool)
N_ray_samples = 64
if self.training:
chunk_size = batch['ray_o'].shape[1]
batch_size, n_pixels = ray_o.shape[:2]
output_list = []
for i in range(0, n_pixels, chunk_size):
near_chunk = near[:, i: i + chunk_size]
far_chunk = far[:, i: i + chunk_size]
ray_o_chunk = ray_o[:, i: i + chunk_size]
ray_d_chunk = ray_d[:, i: i + chunk_size]
valid_dist_flag_chunk = valid_dist_flag[:, i: i + chunk_size]
# sample points on each ray
pts, z_vals = nerf_util.sample_pts_on_rays(ray_o_chunk, ray_d_chunk, near_chunk, far_chunk,
N_samples = N_ray_samples,
perturb = self.training,
depth_guided_mask = valid_dist_flag_chunk)
# # debug: visualize pts
# import trimesh
# pts_trimesh = trimesh.PointCloud(pts[0].cpu().numpy().reshape(-1, 3))
# pts_trimesh.export('./debug/sampled_pts_%s.obj' % 'training' if self.training else 'testing')
# exit(1)
# flat
_, n_pixels_chunk, n_samples = pts.shape[:3]
pts = pts.view(batch_size, n_pixels_chunk * n_samples, -1)
dists = z_vals[..., 1:] - z_vals[..., :-1]
dists = torch.cat([dists, dists[..., -1:]], -1)
# query
if space == 'live':
cano_pts, near_flag = self.transform_live2cano(pts, batch)
elif space == 'cano':
cano_pts = pts
else:
raise ValueError('Invalid rendering space!')
viewdirs = ray_d_chunk / torch.norm(ray_d_chunk, dim = -1, keepdim = True)
viewdirs = viewdirs[:, :, None, :].expand(-1, -1, n_samples, -1).reshape(batch_size, n_pixels_chunk * n_samples, -1)
# apply gaussian noise to avoid overfitting
if self.training:
with torch.no_grad():
noise = torch.randn_like(viewdirs) * 0.1
viewdirs = viewdirs + noise
viewdirs = viewdirs / torch.norm(viewdirs, dim = -1, keepdim = True)
ret = self.forward_cano_radiance_field(cano_pts, viewdirs, batch)
if self.with_hand:
self.fuse_hands(ret, pts, viewdirs, batch, space)
ret['color'] = ret['color'].view(batch_size, n_pixels_chunk, n_samples, -1)
ret['density'] = ret['density'].view(batch_size, n_pixels_chunk, n_samples, -1)
# integration
alpha = 1. - torch.exp(-ret['density'] * dists[..., None])
raw = torch.cat([ret['color'], alpha], dim = -1)
rgb_map, disp_map, acc_map, weights, depth_map = nerf_util.raw2outputs(raw, z_vals, white_bkgd = white_bkgd)
output_chunk = {
'rgb_map': rgb_map, # (batch_size, n_pixel_chunk, 3)
'acc_map': acc_map
}
if 'normal' in ret:
output_chunk.update({
'normal': ret['normal'].view(batch_size, n_pixels_chunk, -1, 3)
})
if 'tv_loss' in ret:
output_chunk.update({
'tv_loss': ret['tv_loss'].view(1, 1, -1)
})
output_list.append(output_chunk)
keys = output_list[0].keys()
output_list = {k: torch.cat([r[k] for r in output_list], dim = 1) for k in keys}
# processing for patch-based ray sampling
if 'mask_within_patch' in batch:
_, ray_num = batch['mask_within_patch'].shape
rgb_map = torch.zeros((batch_size, ray_num, 3), dtype = torch.float32, device = config.device)
acc_map = torch.zeros((batch_size, ray_num), dtype = torch.float32, device = config.device)
rgb_map[batch['mask_within_patch']] = output_list['rgb_map'].reshape(-1, 3)
acc_map[batch['mask_within_patch']] = output_list['acc_map'].reshape(-1)
batch['color_gt'][~batch['mask_within_patch']] = 0.
batch['mask_gt'][~batch['mask_within_patch']] = 0.
output_list['rgb_map'] = rgb_map
output_list['acc_map'] = acc_map
return output_list
|