File size: 7,783 Bytes
ec9a6bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from pytorch3d.renderer import (
    look_at_view_transform,
    PerspectiveCameras,
    OrthographicCameras,
    PointLights,
    DirectionalLights,
    Materials,
    RasterizationSettings,
    MeshRenderer,
    MeshRasterizer,
    TexturesUV,
    TexturesVertex
)
from pytorch3d.renderer.mesh.shader import ShaderBase, HardDepthShader, HardPhongShader
from pytorch3d.renderer.mesh.rasterizer import Fragments
from pytorch3d.renderer.blending import (
    BlendParams,
    hard_rgb_blend,
    sigmoid_alpha_blend,
    softmax_rgb_blend,
)
from pytorch3d.renderer.mesh.textures import TexturesVertex
from pytorch3d.structures import Meshes
import torch
import numpy as np
import cv2 as cv


class VertexAtrriShader(ShaderBase):
    def forward(self, fragments: Fragments, meshes: Meshes, **kwargs) -> torch.Tensor:
        texels = meshes.sample_textures(fragments)
        blend_params = kwargs.get("blend_params", self.blend_params)

        images = hard_rgb_blend(texels, fragments, blend_params)
        return images


class Renderer:
    def __init__(self, img_w: int, img_h: int, mvp = None, shader_name = 'vertex_attribute', bg_color = (0, 0, 0), win_name = None, device = 'cuda'):
        self.img_w = img_w
        self.img_h = img_h
        self.device = device
        raster_settings = RasterizationSettings(
            image_size = (img_h, img_w),
            blur_radius = 0.0,
            faces_per_pixel = 1,
            bin_size = None,
            max_faces_per_bin = 50000
        )

        self.shader_name = shader_name
        blend_params = BlendParams(background_color = bg_color)
        if shader_name == 'vertex_attribute':
            shader = VertexAtrriShader(device = device, blend_params = blend_params)
        elif shader_name == 'position':
            shader = VertexAtrriShader(device = device, blend_params = blend_params)
        elif shader_name == 'phong_geometry':
            shader = HardPhongShader(device = device, blend_params = blend_params)
        else:
            raise ValueError('Invalid shader_name')
        self.renderer = MeshRenderer(
            rasterizer = MeshRasterizer(
                cameras = None,
                raster_settings = raster_settings
            ),
            shader = shader
        )

        self.mesh = None

    def set_camera(self, extr, intr = None):
        affine_mat = np.identity(4, np.float32)
        affine_mat[0, 0] = -1
        affine_mat[1, 1] = -1
        extr = affine_mat @ extr
        extr[:3, :3] = np.linalg.inv(extr[:3, :3])
        extr = torch.from_numpy(extr).to(torch.float32).to(self.device)
        if intr is None:  # assume orthographic projection
            cameras = OrthographicCameras(
                focal_length = ((self.img_w / 2., self.img_h / 2.),),
                principal_point = ((self.img_w / 2., self.img_h / 2.),),
                R = extr[:3, :3].unsqueeze(0),
                T = extr[:3, 3].unsqueeze(0),
                in_ndc = False,
                device = self.device,
                image_size = ((self.img_h, self.img_w),)
            )
        else:
            intr = torch.from_numpy(intr).to(torch.float32).to(self.device)
            cameras = PerspectiveCameras(((intr[0, 0], intr[1, 1]),),
                                         ((intr[0, 2], intr[1, 2]),),
                                         extr[:3, :3].unsqueeze(0),
                                         extr[:3, 3].unsqueeze(0),
                                         in_ndc = False,
                                         device = self.device,
                                         image_size = ((self.img_h, self.img_w),))
        self.renderer.rasterizer.cameras = cameras

    def set_model(self, vertices, vertex_attributes = None):
        if isinstance(vertices, np.ndarray):
            vertices = torch.from_numpy(vertices)
        if vertex_attributes is not None:
            if isinstance(vertex_attributes, np.ndarray):
                vertex_attributes = torch.from_numpy(vertex_attributes)
            vertex_attributes = vertex_attributes.to(torch.float32).to(self.device)
        vertices = vertices.to(torch.float32).to(self.device)
        faces = torch.arange(0, vertices.shape[0], dtype = torch.int64).to(self.device).reshape(-1, 3)

        if self.shader_name == 'vertex_attribute':
            textures = TexturesVertex([vertex_attributes])
        elif self.shader_name == 'position':
            textures = TexturesVertex([vertices])
        else:
            textures = TexturesVertex([torch.ones_like(vertices)])

        self.mesh = Meshes([vertices], [faces], textures = textures)

    def render(self):
        img = self.renderer(self.mesh, cameras = self.renderer.rasterizer.cameras)
        return img[0].cpu().numpy()


if __name__ == '__main__':
    import trimesh
    import json
    import time

    """ test perspective projection """
    # cam_data = json.load(open('F:/Pose/thuman4/calibration_00.json', 'r'))
    # cam_names = list(cam_data.keys())
    # view_num = len(cam_names)
    # extr_mats = []
    # for view_idx in range(view_num):
    #     extr_mat = np.identity(4, np.float32)
    #     extr_mat[:3, :3] = np.array(cam_data[cam_names[view_idx]]['R'], np.float32).reshape(3, 3)
    #     extr_mat[:3, 3] = np.array(cam_data[cam_names[view_idx]]['T'], np.float32)
    #     extr_mats.append(extr_mat)
    # intr_mats = [np.array(cam_data[cam_names[view_idx]]['K'], np.float32).reshape(3, 3) for view_idx in range(view_num)]
    # img_heights = [cam_data[cam_names[view_idx]]['imgSize'][1] for view_idx in range(view_num)]
    # img_widths = [cam_data[cam_names[view_idx]]['imgSize'][0] for view_idx in range(view_num)]
    #
    # mesh = trimesh.load('E:\\ProjectCode\\AvatarHD\\test_results\\zzr_avatarrex\\posevocab_wHand_diffVolume_wRootfind\\thuman00_cam18_epoch120\\live_geometry/2141.ply', process = False)
    #
    # renderer = Renderer(img_widths[0], img_heights[0], shader_name = 'vertex_attribute')
    # # renderer = Renderer(img_widths[0], img_heights[0], shader_name = 'phong_geometry')
    # vertices = mesh.vertices[mesh.faces.reshape(-1)]
    # normals = mesh.vertex_normals[mesh.faces.reshape(-1)]
    # renderer.set_model(vertices, normals)
    #
    # for view_idx in range(view_num):
    #     time_0 = time.time()
    #     proj_mat = gl_perspective_projection_matrix(
    #         intr_mats[view_idx][0, 0],
    #         intr_mats[view_idx][1, 1],
    #         intr_mats[view_idx][0, 2],
    #         intr_mats[view_idx][1, 2],
    #         renderer.img_w,
    #         renderer.img_h
    #     )
    #     mvp = proj_mat @ extr_mats[view_idx]
    #
    #     renderer.set_camera(extr_mats[view_idx], intr_mats[view_idx])
    #
    #     img = renderer.render()
    #     print('Render cost %f secs' % (time.time() - time_0))
    #
    #     cv.imshow('img', img)
    #     cv.waitKey(0)

    """ test orthographic projection """
    mesh = trimesh.load('../debug/cano_smpl.obj', process = False)
    renderer = Renderer(1024, 1024, shader_name = 'vertex_attribute')

    cano_center = 0.5 * (mesh.vertices.max(0) + mesh.vertices.min(0))
    front_mv = np.identity(4, np.float32)
    front_mv[:3, 3] = -cano_center + np.array([0, 0, -10], np.float32)
    front_mv[1:3] *= -1  # gl2real

    vertices = mesh.vertices[mesh.faces.reshape(-1)].astype(np.float32)
    normals = mesh.vertex_normals[mesh.faces.reshape(-1)].astype(np.float32)
    renderer.set_camera(front_mv)
    renderer.set_model(vertices, normals)
    img = renderer.render()
    cv.imshow('img', img)
    cv.waitKey(0)