File size: 7,583 Bytes
ec9a6bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import math
import numpy as np
import torch
import torch.nn.functional as F
import cv2 as cv
import trimesh


def pos_map_to_mesh(pos_map: torch.Tensor):
    pd = (0, 0, 1 if pos_map.shape[1] % 2 == 1 else 0, 0, 1 if pos_map.shape[0] % 2 == 1 else 0, 0)
    pos_map = F.pad(pos_map, pd, 'constant', 0)
    mask = torch.linalg.norm(pos_map, dim = -1) > 0.1
    # cv.imshow('mask', mask.cpu().numpy().astype(np.uint8) * 255)
    mask = cv.erode(mask.cpu().numpy().astype(np.uint8), (5, 5), iterations = 20)
    mask = torch.from_numpy(mask > 0).to(pos_map.device)
    # cv.imshow('mask_eroded', mask.cpu().numpy().astype(np.uint8) * 255)
    # cv.waitKey(0)
    v0 = pos_map[:-1, :-1].reshape(-1, 3)
    v1 = pos_map[1:, :-1].reshape(-1, 3)
    v2 = pos_map[:-1, 1:].reshape(-1, 3)
    v3 = pos_map[1:, 1:].reshape(-1, 3)
    m0 = mask[:-1, :-1].reshape(-1)
    m1 = mask[1:, :-1].reshape(-1)
    m2 = mask[:-1, 1:].reshape(-1)
    m3 = mask[1:, 1:].reshape(-1)
    vertices = torch.cat([v0, v1, v2, v3], 0)
    masks = torch.cat([m0, m1, m2, m3], 0)
    pnum = v0.shape[0]

    a = torch.arange(0, pnum).to(torch.int64).to(pos_map.device)
    f1 = torch.stack([a, a + pnum, a + pnum * 2], 1)
    f2 = torch.stack([a + pnum, a + pnum * 3, a + pnum * 2], 1)
    faces = torch.cat([f1, f2], 0)

    # remove invalid faces
    face_mask = masks[faces.reshape(-1)].reshape(-1, 3).sum(1) == 3
    face_mask = torch.logical_and(face_mask, torch.linalg.norm(vertices[faces[:, 0]] - vertices[faces[:, 1]], dim = 1) < 0.02)
    face_mask = torch.logical_and(face_mask, torch.linalg.norm(vertices[faces[:, 1]] - vertices[faces[:, 2]], dim = 1) < 0.02)
    face_mask = torch.logical_and(face_mask, torch.linalg.norm(vertices[faces[:, 0]] - vertices[faces[:, 2]], dim = 1) < 0.02)
    valid_faces = faces[face_mask]

    # debug
    mesh = trimesh.Trimesh(vertices = vertices.cpu().numpy(), faces = valid_faces.cpu().numpy())
    mesh.export('./debug/mesh.obj')
    exit(1)


def to_HSV(c: torch.Tensor):
    """

    :param c: (N, 1) or (N,)

    :return: (N, 3)

    """
    h = (1 - c) * 240. / 60.
    x = 1 - torch.abs(h.to(torch.int64) % 2 + h - h.to(torch.int64) - 1.)

    rgb = torch.zeros((c.shape[0], 3)).to(c).to(torch.int64)

    cond_1 = torch.logical_and(h >= 0, h < 1)
    rgb[cond_1, 0] = 255
    rgb[cond_1, 1] = (x[cond_1] * 255).to(torch.int64)

    cond_2 = torch.logical_and(h >= 1, h < 2)
    rgb[cond_2, 0] = (x[cond_2] * 255).to(torch.int64)
    rgb[cond_2, 1] = 255

    cond_3 = torch.logical_and(h >= 2, h < 3)
    rgb[cond_3, 1] = 255
    rgb[cond_3, 2] = (x[cond_3] * 255).to(torch.int64)

    cond_4 = h >= 3
    rgb[cond_4, 1] = (x[cond_4] * 255).to(torch.int64)
    rgb[cond_4, 2] = 255

    rgb.clip_(0, 255)

    return rgb.to(torch.uint8)


# def calc_back_mv(dist):
#     rot_center = np.array([0, 0, dist], np.float32)
#     trans_mat = np.identity(4, np.float32)
#     trans_mat[:3, :3] = cv.Rodrigues(np.array([0, math.pi, 0]))[0]
#     trans_mat[:3, 3] = (np.identity(3) - trans_mat[:3, :3]) @ rot_center
#
#     return trans_mat


def calc_front_mv(object_center, tar_pos = np.array([0, 0, 2.0])):
    """

    calculate an extrinsic matrix for rendering the front of a 3D object

    under the assumption of fx,fy=550, cx,cy=256, img_h,img_w=512

    :param object_center: np.ndarray, (3,): the original center of the 3D object

    :param tar_pos: np.ndarray, (3,): the target center of the 3D object

    :return: extr_mat: np.ndarray, (4, 4)

    """
    mat_2origin = np.identity(4, np.float32)
    mat_2origin[:3, 3] = -object_center

    mat_rotX = np.identity(4, np.float32)
    mat_rotX[:3, :3] = cv.Rodrigues(np.array([math.pi, 0, 0]))[0]

    mat_2tarPos = np.identity(4, np.float32)
    mat_2tarPos[:3, 3] = tar_pos

    extr_mat = mat_2tarPos @ mat_rotX @ mat_2origin
    return extr_mat


def calc_back_mv(object_center, tar_pos = np.array([0, 0, 2.0])):
    """

    calculate an extrinsic matrix for rendering the back of a 3D object

    under the assumption of fx,fy=550, cx,cy=256, img_h,img_w=512

    :param object_center: np.ndarray, (3,): the original center of the 3D object

    :param tar_pos: np.ndarray, (3,): the target center of the 3D object

    :return: extr_mat: np.ndarray, (4, 4)

    """
    mat_2origin = np.identity(4, np.float32)
    mat_2origin[:3, 3] = -object_center

    mat_rotX = np.identity(4, np.float32)
    mat_rotX[:3, :3] = cv.Rodrigues(np.array([math.pi, 0, 0]))[0]

    mat_rotY = np.identity(4, np.float32)
    mat_rotY[:3, :3] = cv.Rodrigues(np.array([0, math.pi, 0]))[0]

    mat_2tarPos = np.identity(4, np.float32)
    mat_2tarPos[:3, 3] = tar_pos

    extr_mat = mat_2tarPos @ mat_rotY @ mat_rotX @ mat_2origin
    return extr_mat


def calc_free_mv(object_center, tar_pos = np.array([0, 0, 2.0]), rot_Y = 0., rot_X = 0., global_orient = None):
    """

    calculate an extrinsic matrix for rendering the back of a 3D object

    under the assumption of fx,fy=550, cx,cy=256, img_h,img_w=512

    :param object_center: np.ndarray, (3,): the original center of the 3D object

    :param tar_pos: np.ndarray, (3,): the target center of the 3D object

    :param rot_Y: float, rotation angle along Y axis

    :param global_orient: np.ndarray, global orientation of the 3D object

    :return: extr_mat: np.ndarray, (4, 4)

    """
    # import ipdb; ipdb.set_trace()
    mat_2origin = np.identity(4, np.float32)
    mat_2origin[:3, 3] = -object_center

    mat_invGlobalOrient = np.identity(4, np.float32)
    if global_orient is not None:
        mat_invGlobalOrient[:3, :3] = cv.Rodrigues(np.array([math.pi, 0., 0.]))[0] @ np.linalg.inv(global_orient)
    else:
        mat_invGlobalOrient[:3, :3] = cv.Rodrigues(np.array([math.pi, 0., 0.]))[0]

    mat_rotY = np.identity(4, np.float32)
    mat_rotY[:3, :3] = cv.Rodrigues(np.array([0, rot_Y, 0]))[0]

    mat_rotX = np.identity(4, np.float32)
    mat_rotX[:3, :3] = cv.Rodrigues(np.array([rot_X, 0, 0]))[0]

    mat_2tarPos = np.identity(4, np.float32)
    mat_2tarPos[:3, 3] = tar_pos

    extr_mat = mat_2tarPos @ mat_rotX @ mat_rotY @ mat_invGlobalOrient @ mat_2origin
    return extr_mat


def calculate_cano_front_mv(mesh_center):
    if isinstance(mesh_center, torch.Tensor):
        mesh_center = mesh_center.cpu().numpy()
    front_mv = np.identity(4, np.float32)
    front_mv[:3, 3] = -mesh_center + np.array([0, 0, -10], np.float32)
    front_mv[1:3] *= -1
    return front_mv


def calculate_cano_back_mv(mesh_center):
    if isinstance(mesh_center, torch.Tensor):
        mesh_center = mesh_center.cpu().numpy()
    back_mv = np.identity(4, np.float32)
    rot_y = cv.Rodrigues(np.array([0, np.pi, 0], np.float32))[0]
    back_mv[:3, :3] = rot_y
    back_mv[:3, 3] = -rot_y @ mesh_center + np.array([0, 0, -10], np.float32)
    back_mv[1:3] *= -1
    return back_mv


def paper_visualize_pos_map(pos_map):
    mask = np.linalg.norm(pos_map, axis = -1) > 1e-6
    valid_pos = pos_map[mask]
    min_xyz = valid_pos.min(0)[None]
    max_xyz = valid_pos.max(0)[None]
    normalized_pos = (valid_pos - min_xyz) / (max_xyz - min_xyz)
    pos_map[mask] = normalized_pos
    pos_map[~mask] = np.array([0.5, 0.5, 0.5])
    return pos_map

def paper_visualize_gaussian_map(gaussian_map):
    mask = np.linalg.norm(gaussian_map, axis = -1) > 1e-6
    valid_gaussians = gaussian_map[mask]
    u, s, v = np.linalg.svd(valid_gaussians.transpose())
    print(u, s, v)