Spaces:
Runtime error
Runtime error
File size: 7,583 Bytes
ec9a6bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import math
import numpy as np
import torch
import torch.nn.functional as F
import cv2 as cv
import trimesh
def pos_map_to_mesh(pos_map: torch.Tensor):
pd = (0, 0, 1 if pos_map.shape[1] % 2 == 1 else 0, 0, 1 if pos_map.shape[0] % 2 == 1 else 0, 0)
pos_map = F.pad(pos_map, pd, 'constant', 0)
mask = torch.linalg.norm(pos_map, dim = -1) > 0.1
# cv.imshow('mask', mask.cpu().numpy().astype(np.uint8) * 255)
mask = cv.erode(mask.cpu().numpy().astype(np.uint8), (5, 5), iterations = 20)
mask = torch.from_numpy(mask > 0).to(pos_map.device)
# cv.imshow('mask_eroded', mask.cpu().numpy().astype(np.uint8) * 255)
# cv.waitKey(0)
v0 = pos_map[:-1, :-1].reshape(-1, 3)
v1 = pos_map[1:, :-1].reshape(-1, 3)
v2 = pos_map[:-1, 1:].reshape(-1, 3)
v3 = pos_map[1:, 1:].reshape(-1, 3)
m0 = mask[:-1, :-1].reshape(-1)
m1 = mask[1:, :-1].reshape(-1)
m2 = mask[:-1, 1:].reshape(-1)
m3 = mask[1:, 1:].reshape(-1)
vertices = torch.cat([v0, v1, v2, v3], 0)
masks = torch.cat([m0, m1, m2, m3], 0)
pnum = v0.shape[0]
a = torch.arange(0, pnum).to(torch.int64).to(pos_map.device)
f1 = torch.stack([a, a + pnum, a + pnum * 2], 1)
f2 = torch.stack([a + pnum, a + pnum * 3, a + pnum * 2], 1)
faces = torch.cat([f1, f2], 0)
# remove invalid faces
face_mask = masks[faces.reshape(-1)].reshape(-1, 3).sum(1) == 3
face_mask = torch.logical_and(face_mask, torch.linalg.norm(vertices[faces[:, 0]] - vertices[faces[:, 1]], dim = 1) < 0.02)
face_mask = torch.logical_and(face_mask, torch.linalg.norm(vertices[faces[:, 1]] - vertices[faces[:, 2]], dim = 1) < 0.02)
face_mask = torch.logical_and(face_mask, torch.linalg.norm(vertices[faces[:, 0]] - vertices[faces[:, 2]], dim = 1) < 0.02)
valid_faces = faces[face_mask]
# debug
mesh = trimesh.Trimesh(vertices = vertices.cpu().numpy(), faces = valid_faces.cpu().numpy())
mesh.export('./debug/mesh.obj')
exit(1)
def to_HSV(c: torch.Tensor):
"""
:param c: (N, 1) or (N,)
:return: (N, 3)
"""
h = (1 - c) * 240. / 60.
x = 1 - torch.abs(h.to(torch.int64) % 2 + h - h.to(torch.int64) - 1.)
rgb = torch.zeros((c.shape[0], 3)).to(c).to(torch.int64)
cond_1 = torch.logical_and(h >= 0, h < 1)
rgb[cond_1, 0] = 255
rgb[cond_1, 1] = (x[cond_1] * 255).to(torch.int64)
cond_2 = torch.logical_and(h >= 1, h < 2)
rgb[cond_2, 0] = (x[cond_2] * 255).to(torch.int64)
rgb[cond_2, 1] = 255
cond_3 = torch.logical_and(h >= 2, h < 3)
rgb[cond_3, 1] = 255
rgb[cond_3, 2] = (x[cond_3] * 255).to(torch.int64)
cond_4 = h >= 3
rgb[cond_4, 1] = (x[cond_4] * 255).to(torch.int64)
rgb[cond_4, 2] = 255
rgb.clip_(0, 255)
return rgb.to(torch.uint8)
# def calc_back_mv(dist):
# rot_center = np.array([0, 0, dist], np.float32)
# trans_mat = np.identity(4, np.float32)
# trans_mat[:3, :3] = cv.Rodrigues(np.array([0, math.pi, 0]))[0]
# trans_mat[:3, 3] = (np.identity(3) - trans_mat[:3, :3]) @ rot_center
#
# return trans_mat
def calc_front_mv(object_center, tar_pos = np.array([0, 0, 2.0])):
"""
calculate an extrinsic matrix for rendering the front of a 3D object
under the assumption of fx,fy=550, cx,cy=256, img_h,img_w=512
:param object_center: np.ndarray, (3,): the original center of the 3D object
:param tar_pos: np.ndarray, (3,): the target center of the 3D object
:return: extr_mat: np.ndarray, (4, 4)
"""
mat_2origin = np.identity(4, np.float32)
mat_2origin[:3, 3] = -object_center
mat_rotX = np.identity(4, np.float32)
mat_rotX[:3, :3] = cv.Rodrigues(np.array([math.pi, 0, 0]))[0]
mat_2tarPos = np.identity(4, np.float32)
mat_2tarPos[:3, 3] = tar_pos
extr_mat = mat_2tarPos @ mat_rotX @ mat_2origin
return extr_mat
def calc_back_mv(object_center, tar_pos = np.array([0, 0, 2.0])):
"""
calculate an extrinsic matrix for rendering the back of a 3D object
under the assumption of fx,fy=550, cx,cy=256, img_h,img_w=512
:param object_center: np.ndarray, (3,): the original center of the 3D object
:param tar_pos: np.ndarray, (3,): the target center of the 3D object
:return: extr_mat: np.ndarray, (4, 4)
"""
mat_2origin = np.identity(4, np.float32)
mat_2origin[:3, 3] = -object_center
mat_rotX = np.identity(4, np.float32)
mat_rotX[:3, :3] = cv.Rodrigues(np.array([math.pi, 0, 0]))[0]
mat_rotY = np.identity(4, np.float32)
mat_rotY[:3, :3] = cv.Rodrigues(np.array([0, math.pi, 0]))[0]
mat_2tarPos = np.identity(4, np.float32)
mat_2tarPos[:3, 3] = tar_pos
extr_mat = mat_2tarPos @ mat_rotY @ mat_rotX @ mat_2origin
return extr_mat
def calc_free_mv(object_center, tar_pos = np.array([0, 0, 2.0]), rot_Y = 0., rot_X = 0., global_orient = None):
"""
calculate an extrinsic matrix for rendering the back of a 3D object
under the assumption of fx,fy=550, cx,cy=256, img_h,img_w=512
:param object_center: np.ndarray, (3,): the original center of the 3D object
:param tar_pos: np.ndarray, (3,): the target center of the 3D object
:param rot_Y: float, rotation angle along Y axis
:param global_orient: np.ndarray, global orientation of the 3D object
:return: extr_mat: np.ndarray, (4, 4)
"""
# import ipdb; ipdb.set_trace()
mat_2origin = np.identity(4, np.float32)
mat_2origin[:3, 3] = -object_center
mat_invGlobalOrient = np.identity(4, np.float32)
if global_orient is not None:
mat_invGlobalOrient[:3, :3] = cv.Rodrigues(np.array([math.pi, 0., 0.]))[0] @ np.linalg.inv(global_orient)
else:
mat_invGlobalOrient[:3, :3] = cv.Rodrigues(np.array([math.pi, 0., 0.]))[0]
mat_rotY = np.identity(4, np.float32)
mat_rotY[:3, :3] = cv.Rodrigues(np.array([0, rot_Y, 0]))[0]
mat_rotX = np.identity(4, np.float32)
mat_rotX[:3, :3] = cv.Rodrigues(np.array([rot_X, 0, 0]))[0]
mat_2tarPos = np.identity(4, np.float32)
mat_2tarPos[:3, 3] = tar_pos
extr_mat = mat_2tarPos @ mat_rotX @ mat_rotY @ mat_invGlobalOrient @ mat_2origin
return extr_mat
def calculate_cano_front_mv(mesh_center):
if isinstance(mesh_center, torch.Tensor):
mesh_center = mesh_center.cpu().numpy()
front_mv = np.identity(4, np.float32)
front_mv[:3, 3] = -mesh_center + np.array([0, 0, -10], np.float32)
front_mv[1:3] *= -1
return front_mv
def calculate_cano_back_mv(mesh_center):
if isinstance(mesh_center, torch.Tensor):
mesh_center = mesh_center.cpu().numpy()
back_mv = np.identity(4, np.float32)
rot_y = cv.Rodrigues(np.array([0, np.pi, 0], np.float32))[0]
back_mv[:3, :3] = rot_y
back_mv[:3, 3] = -rot_y @ mesh_center + np.array([0, 0, -10], np.float32)
back_mv[1:3] *= -1
return back_mv
def paper_visualize_pos_map(pos_map):
mask = np.linalg.norm(pos_map, axis = -1) > 1e-6
valid_pos = pos_map[mask]
min_xyz = valid_pos.min(0)[None]
max_xyz = valid_pos.max(0)[None]
normalized_pos = (valid_pos - min_xyz) / (max_xyz - min_xyz)
pos_map[mask] = normalized_pos
pos_map[~mask] = np.array([0.5, 0.5, 0.5])
return pos_map
def paper_visualize_gaussian_map(gaussian_map):
mask = np.linalg.norm(gaussian_map, axis = -1) > 1e-6
valid_gaussians = gaussian_map[mask]
u, s, v = np.linalg.svd(valid_gaussians.transpose())
print(u, s, v)
|