pengc02's picture
all
ec9a6bc
import torch
import numpy as np
import AnimatableGaussians.config as config
def to_cuda(items: dict, add_batch = False, precision = torch.float32):
items_cuda = dict()
for key, data in items.items():
if isinstance(data, torch.Tensor):
items_cuda[key] = data.to(config.device)
elif isinstance(data, np.ndarray):
items_cuda[key] = torch.from_numpy(data).to(config.device)
elif isinstance(data, dict): # usually some float tensors
for key2, data2 in data.items():
if isinstance(data2, np.ndarray):
data[key2] = torch.from_numpy(data2).to(config.device)
elif isinstance(data2, torch.Tensor):
data[key2] = data2.to(config.device)
else:
raise TypeError('Do not support other data types.')
if data[key2].dtype == torch.float32 or data[key2].dtype == torch.float64:
data[key2] = data[key2].to(precision)
items_cuda[key] = data
else:
items_cuda[key] = data
if isinstance(items_cuda[key], torch.Tensor) and\
(items_cuda[key].dtype == torch.float32 or items_cuda[key].dtype == torch.float64):
items_cuda[key] = items_cuda[key].to(precision)
if add_batch:
if isinstance(items_cuda[key], torch.Tensor):
items_cuda[key] = items_cuda[key].unsqueeze(0)
elif isinstance(items_cuda[key], dict):
for k in items_cuda[key].keys():
items_cuda[key][k] = items_cuda[key][k].unsqueeze(0)
else:
items_cuda[key] = [items_cuda[key]]
return items_cuda
def delete_batch_idx(items: dict):
for k, v in items.items():
if isinstance(v, torch.Tensor):
assert v.shape[0] == 1
items[k] = v[0]
return items
def generate_volume_points(bounds, testing_res = (256, 256, 256)):
x_coords = torch.linspace(0, 1, steps = testing_res[0], dtype = torch.float32, device = config.device).detach()
y_coords = torch.linspace(0, 1, steps = testing_res[1], dtype = torch.float32, device = config.device).detach()
z_coords = torch.linspace(0, 1, steps = testing_res[2], dtype = torch.float32, device = config.device).detach()
xv, yv, zv = torch.meshgrid(x_coords, y_coords, z_coords) # print(xv.shape) # (256, 256, 256)
xv = torch.reshape(xv, (-1, 1)) # print(xv.shape) # (256*256*256, 1)
yv = torch.reshape(yv, (-1, 1))
zv = torch.reshape(zv, (-1, 1))
pts = torch.cat([xv, yv, zv], dim = -1)
# transform to canonical space
if isinstance(bounds, np.ndarray):
bounds = torch.from_numpy(bounds).to(pts)
pts = pts * (bounds[1] - bounds[0]) + bounds[0]
return pts