Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,38 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
-
π Universal AI Character Management Platform
|
| 4 |
-
Professional-grade character consistency
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
"""
|
| 6 |
|
| 7 |
import os
|
|
@@ -18,7 +49,6 @@ import random
|
|
| 18 |
from datetime import datetime, timedelta
|
| 19 |
import logging
|
| 20 |
from pathlib import Path
|
| 21 |
-
from dataclasses import dataclass
|
| 22 |
|
| 23 |
# GPU acceleration support
|
| 24 |
try:
|
|
@@ -30,33 +60,19 @@ try:
|
|
| 30 |
except ImportError:
|
| 31 |
SPACES_AVAILABLE = False
|
| 32 |
|
| 33 |
-
@dataclass
|
| 34 |
-
class MCPCharacterPerformanceReport:
|
| 35 |
-
"""Character performance data using MCP tools"""
|
| 36 |
-
session_id: str
|
| 37 |
-
character_name: str
|
| 38 |
-
user_input: str
|
| 39 |
-
ai_response: str
|
| 40 |
-
consistency_score: float
|
| 41 |
-
authenticity_score: float
|
| 42 |
-
protocol_compliance: float
|
| 43 |
-
character_violations: List[str]
|
| 44 |
-
timestamp: str
|
| 45 |
-
mcp_analysis: Dict[str, Any]
|
| 46 |
-
|
| 47 |
class UniversalCharacterManager:
|
| 48 |
"""
|
| 49 |
-
Universal AI Character Management System
|
| 50 |
|
| 51 |
Framework-agnostic character state management with persistence, consistency tracking,
|
| 52 |
-
professional adaptation tools
|
| 53 |
"""
|
| 54 |
|
| 55 |
def __init__(self, character_name: str = "creed", model_path: str = "phxdev/creed-qwen-0.5b-lora"):
|
| 56 |
self.character_name = character_name
|
| 57 |
self.model_path = model_path
|
| 58 |
|
| 59 |
-
# Core AI model management
|
| 60 |
self.model = None
|
| 61 |
self.tokenizer = None
|
| 62 |
self.model_loaded = False
|
|
@@ -73,345 +89,29 @@ class UniversalCharacterManager:
|
|
| 73 |
self.persona_facts = {}
|
| 74 |
self.conversation_history = []
|
| 75 |
|
| 76 |
-
#
|
| 77 |
-
self.mcp_monitoring_enabled = True
|
| 78 |
-
self.mcp_performance_reports = []
|
| 79 |
-
self.active_character_protocols = {}
|
| 80 |
-
self.character_deployment_status = {}
|
| 81 |
-
|
| 82 |
-
# Enhanced character metrics with MCP monitoring
|
| 83 |
self.character_metrics = {
|
| 84 |
"consistency_score": 0.0,
|
| 85 |
"authenticity_score": 0.0,
|
| 86 |
"adaptation_rate": 0.0,
|
| 87 |
-
"memory_retention": 0.0
|
| 88 |
-
"mcp_system_performance": {},
|
| 89 |
-
"protocol_deployment_status": {},
|
| 90 |
-
"real_time_feedback_enabled": True
|
| 91 |
}
|
| 92 |
|
| 93 |
-
# Initialize systems
|
| 94 |
self._setup_character_persistence()
|
| 95 |
-
self._setup_mcp_monitoring_tables()
|
| 96 |
|
| 97 |
-
print(f"π Initializing Universal Character Manager
|
| 98 |
print(f"π Character: {character_name}")
|
| 99 |
print(f"π§ Session ID: {self.session_id}")
|
| 100 |
-
print(f"π MCP Integration: ACTIVE")
|
| 101 |
print(f"π₯οΈ Device: {self.device}")
|
| 102 |
|
| 103 |
if torch.cuda.is_available():
|
| 104 |
print(f"π GPU: {torch.cuda.get_device_name()}")
|
| 105 |
print(f"πΎ GPU Memory: {torch.cuda.get_device_properties(0).total_memory // 1024**3} GB")
|
| 106 |
|
| 107 |
-
# Load demonstration model
|
| 108 |
self.load_demonstration_model()
|
| 109 |
|
| 110 |
-
def _setup_mcp_monitoring_tables(self):
|
| 111 |
-
"""Setup additional tables for MCP monitoring"""
|
| 112 |
-
try:
|
| 113 |
-
conn = sqlite3.connect(self.memory_db_path)
|
| 114 |
-
cursor = conn.cursor()
|
| 115 |
-
|
| 116 |
-
# MCP Character Performance Reports
|
| 117 |
-
cursor.execute('''
|
| 118 |
-
CREATE TABLE IF NOT EXISTS mcp_character_reports (
|
| 119 |
-
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 120 |
-
session_id TEXT,
|
| 121 |
-
character_name TEXT,
|
| 122 |
-
user_input TEXT,
|
| 123 |
-
ai_response TEXT,
|
| 124 |
-
consistency_score REAL,
|
| 125 |
-
authenticity_score REAL,
|
| 126 |
-
protocol_compliance REAL,
|
| 127 |
-
character_violations TEXT,
|
| 128 |
-
mcp_analysis TEXT,
|
| 129 |
-
timestamp TEXT
|
| 130 |
-
)
|
| 131 |
-
''')
|
| 132 |
-
|
| 133 |
-
# MCP Character Protocol Deployments
|
| 134 |
-
cursor.execute('''
|
| 135 |
-
CREATE TABLE IF NOT EXISTS mcp_protocol_deployments (
|
| 136 |
-
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 137 |
-
session_id TEXT,
|
| 138 |
-
character_name TEXT,
|
| 139 |
-
protocol_text TEXT,
|
| 140 |
-
deployment_success BOOLEAN,
|
| 141 |
-
mcp_system_id TEXT,
|
| 142 |
-
deployment_timestamp TEXT,
|
| 143 |
-
performance_baseline REAL
|
| 144 |
-
)
|
| 145 |
-
''')
|
| 146 |
-
|
| 147 |
-
# MCP Real-time Analytics
|
| 148 |
-
cursor.execute('''
|
| 149 |
-
CREATE TABLE IF NOT EXISTS mcp_analytics (
|
| 150 |
-
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 151 |
-
session_id TEXT,
|
| 152 |
-
metric_name TEXT,
|
| 153 |
-
metric_value REAL,
|
| 154 |
-
analysis_timestamp TEXT,
|
| 155 |
-
mcp_source TEXT
|
| 156 |
-
)
|
| 157 |
-
''')
|
| 158 |
-
|
| 159 |
-
conn.commit()
|
| 160 |
-
conn.close()
|
| 161 |
-
print("β
MCP monitoring persistence system initialized")
|
| 162 |
-
except Exception as e:
|
| 163 |
-
print(f"β οΈ MCP monitoring setup failed (non-critical): {e}")
|
| 164 |
-
|
| 165 |
-
def mcp_analyze_character_response(self, user_input: str, ai_response: str, character_profile: Dict[str, Any]) -> MCPCharacterPerformanceReport:
|
| 166 |
-
"""
|
| 167 |
-
MCP-NATIVE character response analysis using Claude's own capabilities
|
| 168 |
-
This is the key integration point - Claude analyzes its own responses
|
| 169 |
-
"""
|
| 170 |
-
|
| 171 |
-
# Character consistency analysis
|
| 172 |
-
consistency_indicators = {
|
| 173 |
-
"speech_patterns": 0.0,
|
| 174 |
-
"personality_alignment": 0.0,
|
| 175 |
-
"knowledge_boundaries": 0.0,
|
| 176 |
-
"behavioral_consistency": 0.0
|
| 177 |
-
}
|
| 178 |
-
|
| 179 |
-
violations = []
|
| 180 |
-
|
| 181 |
-
# Analyze speech patterns
|
| 182 |
-
expected_markers = character_profile.get("speech_markers", [])
|
| 183 |
-
response_lower = ai_response.lower()
|
| 184 |
-
|
| 185 |
-
marker_count = sum(1 for marker in expected_markers if marker.lower() in response_lower)
|
| 186 |
-
if expected_markers:
|
| 187 |
-
consistency_indicators["speech_patterns"] = min(1.0, marker_count / len(expected_markers) * 2)
|
| 188 |
-
else:
|
| 189 |
-
consistency_indicators["speech_patterns"] = 0.8 # Default if no markers defined
|
| 190 |
-
|
| 191 |
-
# Check for character-breaking content
|
| 192 |
-
breaking_phrases = [
|
| 193 |
-
"i am an ai", "as an ai assistant", "i cannot", "i don't have access",
|
| 194 |
-
"according to my training", "as a language model"
|
| 195 |
-
]
|
| 196 |
-
|
| 197 |
-
for phrase in breaking_phrases:
|
| 198 |
-
if phrase in response_lower:
|
| 199 |
-
violations.append(f"character_break: {phrase}")
|
| 200 |
-
consistency_indicators["personality_alignment"] -= 0.3
|
| 201 |
-
|
| 202 |
-
# Knowledge boundary analysis
|
| 203 |
-
character_knowledge = character_profile.get("knowledge_areas", [])
|
| 204 |
-
character_limitations = character_profile.get("limitations", [])
|
| 205 |
-
|
| 206 |
-
# Check if response demonstrates appropriate knowledge level
|
| 207 |
-
if any(area.lower() in response_lower for area in character_knowledge):
|
| 208 |
-
consistency_indicators["knowledge_boundaries"] += 0.2
|
| 209 |
-
|
| 210 |
-
# Check for knowledge the character shouldn't have
|
| 211 |
-
prohibited_knowledge = ["advanced AI", "machine learning", "neural networks", "API", "database"]
|
| 212 |
-
if any(term.lower() in response_lower for term in prohibited_knowledge):
|
| 213 |
-
violations.append("inappropriate_knowledge")
|
| 214 |
-
consistency_indicators["knowledge_boundaries"] -= 0.4
|
| 215 |
-
|
| 216 |
-
# Response length and style analysis
|
| 217 |
-
words = ai_response.split()
|
| 218 |
-
if len(words) > 150:
|
| 219 |
-
violations.append("response_too_verbose")
|
| 220 |
-
consistency_indicators["behavioral_consistency"] -= 0.2
|
| 221 |
-
elif len(words) < 3:
|
| 222 |
-
violations.append("response_too_brief")
|
| 223 |
-
consistency_indicators["behavioral_consistency"] -= 0.3
|
| 224 |
-
else:
|
| 225 |
-
consistency_indicators["behavioral_consistency"] = 0.8
|
| 226 |
-
|
| 227 |
-
# Calculate overall scores
|
| 228 |
-
consistency_score = max(0.0, sum(consistency_indicators.values()) / len(consistency_indicators))
|
| 229 |
-
|
| 230 |
-
# Authenticity based on character-specific elements
|
| 231 |
-
authenticity_score = self._calculate_authenticity_score(ai_response, character_profile)
|
| 232 |
-
|
| 233 |
-
# Protocol compliance (how well response follows character guidelines)
|
| 234 |
-
protocol_compliance = self._calculate_protocol_compliance(ai_response, user_input, character_profile)
|
| 235 |
-
|
| 236 |
-
# MCP Analysis metadata
|
| 237 |
-
mcp_analysis = {
|
| 238 |
-
"consistency_breakdown": consistency_indicators,
|
| 239 |
-
"analysis_method": "mcp_native_claude_analysis",
|
| 240 |
-
"response_word_count": len(words),
|
| 241 |
-
"character_markers_found": marker_count,
|
| 242 |
-
"total_violations": len(violations),
|
| 243 |
-
"analysis_confidence": 0.85 # Claude's analysis confidence
|
| 244 |
-
}
|
| 245 |
-
|
| 246 |
-
# Create performance report
|
| 247 |
-
report = MCPCharacterPerformanceReport(
|
| 248 |
-
session_id=self.session_id,
|
| 249 |
-
character_name=self.character_name,
|
| 250 |
-
user_input=user_input,
|
| 251 |
-
ai_response=ai_response,
|
| 252 |
-
consistency_score=consistency_score,
|
| 253 |
-
authenticity_score=authenticity_score,
|
| 254 |
-
protocol_compliance=protocol_compliance,
|
| 255 |
-
character_violations=violations,
|
| 256 |
-
timestamp=datetime.now().isoformat(),
|
| 257 |
-
mcp_analysis=mcp_analysis
|
| 258 |
-
)
|
| 259 |
-
|
| 260 |
-
# Store in MCP monitoring database
|
| 261 |
-
self._store_mcp_performance_report(report)
|
| 262 |
-
|
| 263 |
-
return report
|
| 264 |
-
|
| 265 |
-
def _calculate_authenticity_score(self, response: str, character_profile: Dict[str, Any]) -> float:
|
| 266 |
-
"""Calculate character authenticity using MCP analysis"""
|
| 267 |
-
score = 0.5 # Base authenticity
|
| 268 |
-
|
| 269 |
-
# Character-specific authenticity markers
|
| 270 |
-
authentic_markers = character_profile.get("authentic_expressions", [])
|
| 271 |
-
personality_traits = character_profile.get("personality", "").lower()
|
| 272 |
-
|
| 273 |
-
response_lower = response.lower()
|
| 274 |
-
|
| 275 |
-
# Positive authenticity indicators
|
| 276 |
-
for marker in authentic_markers:
|
| 277 |
-
if marker.lower() in response_lower:
|
| 278 |
-
score += 0.15
|
| 279 |
-
|
| 280 |
-
# Personality alignment check
|
| 281 |
-
if "mysterious" in personality_traits and any(word in response_lower for word in ["secret", "mysterious", "hidden"]):
|
| 282 |
-
score += 0.1
|
| 283 |
-
if "quirky" in personality_traits and any(word in response_lower for word in ["unusual", "strange", "weird"]):
|
| 284 |
-
score += 0.1
|
| 285 |
-
|
| 286 |
-
# Negative authenticity indicators (modern/anachronistic elements)
|
| 287 |
-
anachronisms = ["smartphone", "internet", "social media", "app", "wifi", "bluetooth"]
|
| 288 |
-
for term in anachronisms:
|
| 289 |
-
if term in response_lower:
|
| 290 |
-
score -= 0.2
|
| 291 |
-
|
| 292 |
-
return max(0.0, min(1.0, score))
|
| 293 |
-
|
| 294 |
-
def _calculate_protocol_compliance(self, response: str, user_input: str, character_profile: Dict[str, Any]) -> float:
|
| 295 |
-
"""Calculate how well response follows character protocol"""
|
| 296 |
-
compliance = 0.7 # Base compliance
|
| 297 |
-
|
| 298 |
-
# Check if response addresses user input appropriately
|
| 299 |
-
if len(response.strip()) > 0 and response.strip() != "...":
|
| 300 |
-
compliance += 0.1
|
| 301 |
-
|
| 302 |
-
# Check for character-appropriate response length
|
| 303 |
-
words = response.split()
|
| 304 |
-
if 5 <= len(words) <= 100: # Appropriate length
|
| 305 |
-
compliance += 0.1
|
| 306 |
-
elif len(words) > 200: # Too verbose
|
| 307 |
-
compliance -= 0.2
|
| 308 |
-
|
| 309 |
-
# Check for helpful but character-appropriate response
|
| 310 |
-
if any(word in response.lower() for word in ["help", "sure", "yes", "certainly"]):
|
| 311 |
-
compliance += 0.1
|
| 312 |
-
|
| 313 |
-
return max(0.0, min(1.0, compliance))
|
| 314 |
-
|
| 315 |
-
def _store_mcp_performance_report(self, report: MCPCharacterPerformanceReport):
|
| 316 |
-
"""Store MCP performance report in database"""
|
| 317 |
-
try:
|
| 318 |
-
conn = sqlite3.connect(self.memory_db_path)
|
| 319 |
-
cursor = conn.cursor()
|
| 320 |
-
|
| 321 |
-
cursor.execute('''
|
| 322 |
-
INSERT INTO mcp_character_reports
|
| 323 |
-
(session_id, character_name, user_input, ai_response, consistency_score,
|
| 324 |
-
authenticity_score, protocol_compliance, character_violations, mcp_analysis, timestamp)
|
| 325 |
-
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
|
| 326 |
-
''', (
|
| 327 |
-
report.session_id,
|
| 328 |
-
report.character_name,
|
| 329 |
-
report.user_input,
|
| 330 |
-
report.ai_response,
|
| 331 |
-
report.consistency_score,
|
| 332 |
-
report.authenticity_score,
|
| 333 |
-
report.protocol_compliance,
|
| 334 |
-
json.dumps(report.character_violations),
|
| 335 |
-
json.dumps(report.mcp_analysis),
|
| 336 |
-
report.timestamp
|
| 337 |
-
))
|
| 338 |
-
|
| 339 |
-
conn.commit()
|
| 340 |
-
conn.close()
|
| 341 |
-
|
| 342 |
-
# Update live metrics
|
| 343 |
-
self.mcp_performance_reports.append(report)
|
| 344 |
-
if len(self.mcp_performance_reports) > 50: # Keep last 50 reports
|
| 345 |
-
self.mcp_performance_reports = self.mcp_performance_reports[-50:]
|
| 346 |
-
|
| 347 |
-
except Exception as e:
|
| 348 |
-
print(f"β οΈ MCP performance report storage failed: {e}")
|
| 349 |
-
|
| 350 |
-
def mcp_deploy_character_protocol(self, protocol_text: str, target_system: str = "claude_mcp") -> Dict[str, Any]:
|
| 351 |
-
"""
|
| 352 |
-
Deploy character protocol using MCP tools
|
| 353 |
-
In MCP context, this means storing the protocol and activating monitoring
|
| 354 |
-
"""
|
| 355 |
-
|
| 356 |
-
deployment_result = {
|
| 357 |
-
"success": False,
|
| 358 |
-
"system_id": target_system,
|
| 359 |
-
"deployment_timestamp": datetime.now().isoformat(),
|
| 360 |
-
"protocol_length": len(protocol_text),
|
| 361 |
-
"monitoring_activated": False
|
| 362 |
-
}
|
| 363 |
-
|
| 364 |
-
try:
|
| 365 |
-
# Store protocol in active protocols
|
| 366 |
-
self.active_character_protocols[target_system] = {
|
| 367 |
-
"protocol": protocol_text,
|
| 368 |
-
"deployed_at": deployment_result["deployment_timestamp"],
|
| 369 |
-
"character_name": self.character_name,
|
| 370 |
-
"monitoring_enabled": True
|
| 371 |
-
}
|
| 372 |
-
|
| 373 |
-
# Store in database
|
| 374 |
-
conn = sqlite3.connect(self.memory_db_path)
|
| 375 |
-
cursor = conn.cursor()
|
| 376 |
-
|
| 377 |
-
cursor.execute('''
|
| 378 |
-
INSERT INTO mcp_protocol_deployments
|
| 379 |
-
(session_id, character_name, protocol_text, deployment_success,
|
| 380 |
-
mcp_system_id, deployment_timestamp, performance_baseline)
|
| 381 |
-
VALUES (?, ?, ?, ?, ?, ?, ?)
|
| 382 |
-
''', (
|
| 383 |
-
self.session_id,
|
| 384 |
-
self.character_name,
|
| 385 |
-
protocol_text,
|
| 386 |
-
True,
|
| 387 |
-
target_system,
|
| 388 |
-
deployment_result["deployment_timestamp"],
|
| 389 |
-
0.0 # Will be updated as performance data comes in
|
| 390 |
-
))
|
| 391 |
-
|
| 392 |
-
conn.commit()
|
| 393 |
-
conn.close()
|
| 394 |
-
|
| 395 |
-
# Activate monitoring
|
| 396 |
-
self.mcp_monitoring_enabled = True
|
| 397 |
-
|
| 398 |
-
deployment_result.update({
|
| 399 |
-
"success": True,
|
| 400 |
-
"monitoring_activated": True,
|
| 401 |
-
"protocol_id": f"{self.session_id}_{target_system}",
|
| 402 |
-
"message": f"Character protocol deployed to {target_system} with MCP monitoring active"
|
| 403 |
-
})
|
| 404 |
-
|
| 405 |
-
print(f"β
Character protocol deployed to {target_system}")
|
| 406 |
-
|
| 407 |
-
except Exception as e:
|
| 408 |
-
deployment_result["error"] = str(e)
|
| 409 |
-
print(f"β Protocol deployment failed: {e}")
|
| 410 |
-
|
| 411 |
-
return deployment_result
|
| 412 |
-
|
| 413 |
-
# =================== ORIGINAL CORE METHODS (Required for platform operation) ===================
|
| 414 |
-
|
| 415 |
def _generate_session_id(self) -> str:
|
| 416 |
"""Generate unique session ID for character state tracking"""
|
| 417 |
timestamp = datetime.now().isoformat()
|
|
@@ -470,7 +170,10 @@ class UniversalCharacterManager:
|
|
| 470 |
print(f"β οΈ Character persistence setup failed (non-critical): {e}")
|
| 471 |
|
| 472 |
def load_demonstration_model(self):
|
| 473 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 474 |
if self.loading or self.model_loaded:
|
| 475 |
return
|
| 476 |
|
|
@@ -486,7 +189,7 @@ class UniversalCharacterManager:
|
|
| 486 |
padding_side="left"
|
| 487 |
)
|
| 488 |
|
| 489 |
-
# Character-specific tokens
|
| 490 |
character_tokens = ["<thinking>", "<memory>", "<adapt>", "<authentic>"]
|
| 491 |
print(f"π Adding character tokens: {character_tokens}")
|
| 492 |
|
|
@@ -501,7 +204,7 @@ class UniversalCharacterManager:
|
|
| 501 |
self.model = AutoModelForCausalLM.from_pretrained(
|
| 502 |
self.model_path,
|
| 503 |
torch_dtype=torch.float16,
|
| 504 |
-
device_map=None,
|
| 505 |
trust_remote_code=True,
|
| 506 |
low_cpu_mem_usage=True
|
| 507 |
)
|
|
@@ -517,12 +220,15 @@ class UniversalCharacterManager:
|
|
| 517 |
|
| 518 |
except Exception as e:
|
| 519 |
print(f"β Model loading failed: {e}")
|
| 520 |
-
print("π‘ Note: In production, integrate with your preferred AI API")
|
| 521 |
self.loading = False
|
| 522 |
|
| 523 |
@spaces.GPU if SPACES_AVAILABLE else lambda func: func
|
| 524 |
def generate_character_response(self, conversation: str, temperature: float = 0.9) -> str:
|
| 525 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 526 |
|
| 527 |
if not self.model_loaded:
|
| 528 |
return "β Demonstration model not loaded. In production, this would call your AI API."
|
|
@@ -563,9 +269,62 @@ class UniversalCharacterManager:
|
|
| 563 |
print(f"β Generation error: {e}")
|
| 564 |
return "π Character processing encountered an issue. Please try again."
|
| 565 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 566 |
def _format_character_conversation(self, message: str, history: List[List[str]]) -> str:
|
| 567 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 568 |
|
|
|
|
| 569 |
character_prompt = f"""You are {self.character_name}. Maintain character consistency.
|
| 570 |
Use character tokens when appropriate:
|
| 571 |
<thinking>for internal character thoughts</thinking>
|
|
@@ -583,7 +342,7 @@ Character Guidelines:
|
|
| 583 |
conversation = character_prompt
|
| 584 |
|
| 585 |
# Include relevant conversation history
|
| 586 |
-
for user_msg, char_msg in history[-4:]:
|
| 587 |
conversation += f"Human: {user_msg}\n"
|
| 588 |
conversation += f"{self.character_name}: {char_msg}\n"
|
| 589 |
|
|
@@ -636,9 +395,9 @@ Character Guidelines:
|
|
| 636 |
|
| 637 |
# Analyze response length appropriateness
|
| 638 |
words = response.split()
|
| 639 |
-
if len(words) > 100:
|
| 640 |
score -= 0.1
|
| 641 |
-
elif len(words) < 5:
|
| 642 |
score -= 0.2
|
| 643 |
|
| 644 |
# Check for repetition
|
|
@@ -651,6 +410,8 @@ Character Guidelines:
|
|
| 651 |
|
| 652 |
def _analyze_response_authenticity(self, response: str) -> float:
|
| 653 |
"""Analyze how authentic the response feels for the character"""
|
|
|
|
|
|
|
| 654 |
|
| 655 |
authenticity_markers = {
|
| 656 |
"positive": ["quarry", "mung", "sheriff", "fake", "mysterious", "business"],
|
|
@@ -675,7 +436,7 @@ Character Guidelines:
|
|
| 675 |
return max(0.0, min(1.0, score))
|
| 676 |
|
| 677 |
def _update_character_metrics(self, consistency: float, authenticity: float):
|
| 678 |
-
"""Update character performance metrics
|
| 679 |
self.conversation_quality_scores.append(consistency)
|
| 680 |
if len(self.conversation_quality_scores) > 20:
|
| 681 |
self.conversation_quality_scores = self.conversation_quality_scores[-20:]
|
|
@@ -684,14 +445,14 @@ Character Guidelines:
|
|
| 684 |
self.character_metrics["consistency_score"] = sum(self.conversation_quality_scores) / len(self.conversation_quality_scores)
|
| 685 |
self.character_metrics["authenticity_score"] = authenticity
|
| 686 |
|
| 687 |
-
# Calculate adaptation rate
|
| 688 |
if len(self.conversation_quality_scores) > 5:
|
| 689 |
recent_avg = sum(self.conversation_quality_scores[-5:]) / 5
|
| 690 |
older_avg = sum(self.conversation_quality_scores[-10:-5]) / 5 if len(self.conversation_quality_scores) >= 10 else recent_avg
|
| 691 |
self.character_metrics["adaptation_rate"] = recent_avg - older_avg
|
| 692 |
|
| 693 |
def _store_character_interaction(self, user_input: str, response: str, consistency: float, authenticity: float):
|
| 694 |
-
"""Store interaction in character persistence system
|
| 695 |
try:
|
| 696 |
conn = sqlite3.connect(self.memory_db_path)
|
| 697 |
cursor = conn.cursor()
|
|
@@ -715,16 +476,12 @@ Character Guidelines:
|
|
| 715 |
print(f"β οΈ Character persistence failed (non-critical): {e}")
|
| 716 |
|
| 717 |
def get_character_analytics(self) -> Dict[str, Any]:
|
| 718 |
-
"""Get comprehensive character performance analytics
|
| 719 |
try:
|
| 720 |
-
# If MCP analytics available, prefer those
|
| 721 |
-
if self.mcp_monitoring_enabled and self.mcp_performance_reports:
|
| 722 |
-
return self.get_mcp_character_analytics()
|
| 723 |
-
|
| 724 |
-
# Fallback to traditional analytics
|
| 725 |
conn = sqlite3.connect(self.memory_db_path)
|
| 726 |
cursor = conn.cursor()
|
| 727 |
|
|
|
|
| 728 |
cursor.execute('''
|
| 729 |
SELECT
|
| 730 |
AVG(consistency_score),
|
|
@@ -741,6 +498,16 @@ Character Guidelines:
|
|
| 741 |
interaction_count = result[2]
|
| 742 |
last_interaction = result[3]
|
| 743 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 744 |
conn.close()
|
| 745 |
|
| 746 |
return {
|
|
@@ -750,55 +517,44 @@ Character Guidelines:
|
|
| 750 |
"avg_consistency": round(avg_consistency, 3),
|
| 751 |
"avg_authenticity": round(avg_authenticity, 3),
|
| 752 |
"last_interaction": last_interaction,
|
|
|
|
| 753 |
"current_metrics": self.character_metrics,
|
| 754 |
-
"improvement_trend": "improving" if self.character_metrics["adaptation_rate"] > 0 else "stable"
|
| 755 |
-
"mcp_integration": self.mcp_monitoring_enabled
|
| 756 |
}
|
| 757 |
|
| 758 |
except Exception as e:
|
| 759 |
return {"error": str(e)}
|
| 760 |
|
| 761 |
-
# =================== UNIVERSAL AI CHARACTER MANAGEMENT TOOLS
|
|
|
|
| 762 |
|
| 763 |
-
def ai_character_activation_tool(self, character_name: str = "professional_assistant", ai_system: str = "
|
| 764 |
-
"""Universal AI Character Activation -
|
| 765 |
-
return f"""π UNIVERSAL CHARACTER ACTIVATION PROTOCOL
|
| 766 |
Character: {character_name}
|
| 767 |
-
AI System: {ai_system}
|
| 768 |
-
MCP Integration: ACTIVE
|
| 769 |
-
|
| 770 |
ACTIVATION INSTRUCTIONS:
|
| 771 |
You are now {character_name}. Embody this character's complete personality and maintain consistency across all interactions.
|
| 772 |
-
|
| 773 |
CORE CHARACTER FRAMEWORK:
|
| 774 |
- Establish clear personality traits and speaking patterns
|
| 775 |
-
- Maintain character voice and perspective consistently
|
| 776 |
- Reference character background and experiences naturally
|
| 777 |
- Show character growth while preserving core identity
|
| 778 |
- Use character-specific knowledge and limitations
|
| 779 |
-
|
| 780 |
-
MCP MONITORING GUIDELINES:
|
| 781 |
-
- All responses will be analyzed for character consistency
|
| 782 |
-
- Authenticity scoring tracks character-appropriate reactions
|
| 783 |
-
- Protocol compliance monitoring ensures guideline adherence
|
| 784 |
-
- Real-time feedback enables continuous character improvement
|
| 785 |
-
|
| 786 |
PROFESSIONAL GUIDELINES:
|
| 787 |
- Maintain character authenticity without sacrificing helpfulness
|
| 788 |
- Balance character traits with professional requirements
|
| 789 |
- Adapt character intensity based on context (business vs. creative)
|
| 790 |
- Remember: You are {character_name}, not a generic AI assistant
|
| 791 |
-
|
| 792 |
-
MCP CONSISTENCY PROTOCOLS:
|
| 793 |
- Reference established character facts and history
|
| 794 |
- Maintain speech patterns and vocabulary consistently
|
| 795 |
- Show character reactions that align with personality
|
| 796 |
- Build on previous interactions and character development
|
|
|
|
| 797 |
|
| 798 |
-
|
| 799 |
-
|
| 800 |
-
def ai_character_memory_system(self, character_name: str = "character", memory_facts: str = "", ai_system: str = "MCP-Claude") -> str:
|
| 801 |
-
"""Universal Character Memory Management - MCP Enhanced"""
|
| 802 |
if memory_facts:
|
| 803 |
if character_name not in self.persona_facts:
|
| 804 |
self.persona_facts[character_name] = []
|
|
@@ -806,43 +562,32 @@ Universal Note: This protocol works with MCP tools and provides real-time monito
|
|
| 806 |
|
| 807 |
established_facts = self.persona_facts.get(character_name, [])
|
| 808 |
|
| 809 |
-
return f"""π§ UNIVERSAL CHARACTER MEMORY SYSTEM
|
| 810 |
Character: {character_name}
|
| 811 |
AI Platform: {ai_system}
|
| 812 |
Memory Bank Status: {len(established_facts)} facts stored
|
| 813 |
-
MCP Monitoring: ACTIVE
|
| 814 |
-
|
| 815 |
STORED CHARACTER FACTS:
|
| 816 |
{chr(10).join(f"β’ {fact}" for fact in established_facts[-10:]) if established_facts else "β’ No facts established yet"}
|
| 817 |
-
|
| 818 |
MEMORY INTEGRATION INSTRUCTIONS:
|
| 819 |
- These facts are now part of {character_name}'s established identity
|
| 820 |
- Reference them naturally in conversations without explicitly mentioning "memory"
|
| 821 |
- Build upon these facts with related details and experiences
|
| 822 |
- Maintain consistency with all established character elements
|
| 823 |
- Use these facts as foundation for authentic character responses
|
| 824 |
-
|
| 825 |
-
MCP MEMORY TRACKING:
|
| 826 |
-
- Character fact consistency is monitored in real-time
|
| 827 |
-
- Memory usage patterns tracked for authenticity scoring
|
| 828 |
-
- Fact integration quality measured for protocol compliance
|
| 829 |
-
- Memory retention analytics provide performance insights
|
| 830 |
-
|
| 831 |
CROSS-PLATFORM COMPATIBILITY:
|
| 832 |
This memory system works with:
|
| 833 |
-
β MCP-Enhanced Claude (with real-time monitoring)
|
| 834 |
β OpenAI GPT models (via system prompts)
|
| 835 |
β Anthropic Claude (via context)
|
| 836 |
β Local models (via prompt engineering)
|
|
|
|
|
|
|
| 837 |
|
| 838 |
-
|
| 839 |
-
|
| 840 |
-
def ai_character_intensity_controller(self, character_name: str = "character", intensity: float = 0.8, context: str = "general", ai_system: str = "MCP-Claude") -> str:
|
| 841 |
-
"""Universal Character Intensity Control - MCP Enhanced"""
|
| 842 |
|
| 843 |
intensity_levels = {
|
| 844 |
0.9: f"MAXIMUM CHARACTER MODE: Full {character_name} immersion, minimal generic AI responses",
|
| 845 |
-
0.7: f"HIGH CHARACTER MODE: Strong {character_name} traits with professional capability",
|
| 846 |
0.5: f"BALANCED MODE: Equal character authenticity and AI helpfulness",
|
| 847 |
0.3: f"LIGHT CHARACTER MODE: Primarily helpful AI with {character_name} flavor",
|
| 848 |
0.1: f"MINIMAL CHARACTER MODE: Mostly standard AI with subtle character hints"
|
|
@@ -860,39 +605,28 @@ This memory system works with:
|
|
| 860 |
base_instruction = intensity_levels[closest_intensity]
|
| 861 |
context_instruction = context_adjustments.get(context, "Standard character behavior")
|
| 862 |
|
| 863 |
-
return f"""βοΈ UNIVERSAL CHARACTER INTENSITY CONTROL
|
| 864 |
Character: {character_name}
|
| 865 |
AI Platform: {ai_system}
|
| 866 |
Intensity Level: {int(intensity * 100)}%
|
| 867 |
Context: {context.title()}
|
| 868 |
-
MCP Monitoring: ACTIVE
|
| 869 |
-
|
| 870 |
INTENSITY SETTING: {base_instruction}
|
| 871 |
CONTEXT ADAPTATION: {context_instruction}
|
| 872 |
-
|
| 873 |
-
MCP INTENSITY TRACKING:
|
| 874 |
-
- Character intensity compliance monitored in real-time
|
| 875 |
-
- Authenticity vs. helpfulness balance scored continuously
|
| 876 |
-
- Context appropriateness measured for each response
|
| 877 |
-
- Intensity adjustment recommendations provided based on performance
|
| 878 |
-
|
| 879 |
IMPLEMENTATION INSTRUCTIONS:
|
| 880 |
- Maintain {character_name} authenticity at {int(intensity * 100)}% intensity
|
| 881 |
- Preserve underlying AI helpfulness and capability
|
| 882 |
- Adapt character expression to {context} context requirements
|
| 883 |
- Balance character traits with practical effectiveness
|
| 884 |
- Ensure responses serve user needs while maintaining character integrity
|
| 885 |
-
|
| 886 |
PLATFORM-SPECIFIC INTEGRATION:
|
| 887 |
-
β’ MCP-Claude: Real-time intensity monitoring with performance feedback
|
| 888 |
β’ OpenAI: Implement via system prompts and temperature settings
|
| 889 |
β’ Anthropic: Use character context with helpfulness balance
|
| 890 |
β’ Local Models: Adjust via prompt engineering and generation parameters
|
|
|
|
|
|
|
| 891 |
|
| 892 |
-
|
| 893 |
-
|
| 894 |
-
def ai_character_break_protocol(self, reason: str = "clarification", ai_system: str = "MCP-Claude") -> str:
|
| 895 |
-
"""Universal Character Break Protocol - MCP Enhanced"""
|
| 896 |
|
| 897 |
break_protocols = {
|
| 898 |
"clarification": "Temporarily step out of character to provide clear information, then return",
|
|
@@ -904,92 +638,68 @@ QUALITY ASSURANCE: All responses monitored for intensity adherence and effective
|
|
| 904 |
|
| 905 |
protocol = break_protocols.get(reason, "General character break for user clarity")
|
| 906 |
|
| 907 |
-
return f"""π¨ UNIVERSAL CHARACTER BREAK PROTOCOL
|
| 908 |
AI Platform: {ai_system}
|
| 909 |
Break Reason: {reason.title()}
|
| 910 |
Protocol: {protocol}
|
| 911 |
-
MCP Monitoring: TRACKING BREAK EVENTS
|
| 912 |
-
|
| 913 |
BREAK EXECUTION INSTRUCTIONS:
|
| 914 |
1. Signal break clearly: "Stepping out of character briefly..."
|
| 915 |
2. Address the specific need: {reason}
|
| 916 |
3. Provide clear, direct response in standard AI voice
|
| 917 |
4. Signal return: "Returning to character now..."
|
| 918 |
5. Resume character seamlessly without meta-commentary
|
| 919 |
-
|
| 920 |
-
MCP BREAK TRACKING:
|
| 921 |
-
- Character break events logged for analysis
|
| 922 |
-
- Break reason categorization for pattern identification
|
| 923 |
-
- Return-to-character quality monitored
|
| 924 |
-
- Break frequency tracked for character stability assessment
|
| 925 |
-
|
| 926 |
-
BREAK TRIGGERS (Universal + MCP):
|
| 927 |
β’ Safety concerns always override character maintenance
|
| 928 |
β’ Technical accuracy requirements that conflict with character knowledge
|
| 929 |
β’ User explicitly requests non-character response
|
| 930 |
β’ Business-critical communications requiring professional clarity
|
| 931 |
β’ Ethical considerations that require AI transparency
|
| 932 |
-
β’ MCP monitoring detects character instability requiring reset
|
| 933 |
-
|
| 934 |
PLATFORM IMPLEMENTATION:
|
| 935 |
-
β’ MCP-Claude: Automated break detection with performance tracking
|
| 936 |
β’ OpenAI: Use function calling or system prompt modification
|
| 937 |
β’ Anthropic: Implement via explicit instruction following
|
| 938 |
β’ Local Models: Program break triggers into generation logic
|
| 939 |
-
|
| 940 |
RETURN STRATEGY: Resume character naturally as if break was a brief pause in character's thought process."""
|
| 941 |
|
| 942 |
-
def ai_character_speech_analyzer(self, character_name: str = "character", sample_text: str = "", ai_system: str = "
|
| 943 |
-
"""Universal Speech Pattern Analysis -
|
| 944 |
|
| 945 |
-
return f"""π£οΈ UNIVERSAL SPEECH PATTERN ANALYZER
|
| 946 |
Character: {character_name}
|
| 947 |
AI Platform: {ai_system}
|
| 948 |
{f"Sample Analysis: {sample_text[:100]}..." if sample_text else "General Pattern Analysis"}
|
| 949 |
-
MCP Integration: ACTIVE
|
| 950 |
-
|
| 951 |
SPEECH PATTERN FRAMEWORK:
|
| 952 |
β’ VOCABULARY: Character-specific word choices and terminology
|
| 953 |
-
β’ SYNTAX: Unique sentence structure and rhythm patterns
|
| 954 |
β’ SPEECH TICS: Recurring phrases, expressions, and verbal habits
|
| 955 |
β’ DELIVERY STYLE: Tone, pace, and emotional expression patterns
|
| 956 |
β’ CULTURAL MARKERS: References, slang, and contextual language use
|
| 957 |
-
|
| 958 |
-
MCP SPEECH MONITORING:
|
| 959 |
-
- Real-time vocabulary consistency tracking
|
| 960 |
-
- Syntax pattern adherence measurement
|
| 961 |
-
- Speech tic frequency analysis
|
| 962 |
-
- Tone appropriateness scoring
|
| 963 |
-
- Cultural marker authenticity validation
|
| 964 |
-
|
| 965 |
IMPLEMENTATION GUIDE:
|
| 966 |
1. Identify character's unique vocabulary preferences
|
| 967 |
2. Map sentence structure patterns and complexity levels
|
| 968 |
3. Catalog recurring phrases and expressions
|
| 969 |
4. Define emotional expression and tone patterns
|
| 970 |
5. Note cultural/temporal language markers
|
| 971 |
-
|
| 972 |
CROSS-PLATFORM ADOPTION:
|
| 973 |
-
β’ MCP-Claude: Real-time speech pattern analysis with feedback
|
| 974 |
β’ OpenAI: Implement via detailed system prompts with speech examples
|
| 975 |
β’ Anthropic: Use character voice guidelines in context
|
| 976 |
β’ Local Models: Train or fine-tune on character speech patterns
|
| 977 |
-
|
| 978 |
QUALITY METRICS:
|
| 979 |
-
- Vocabulary Consistency: Character word choice alignment
|
| 980 |
-
- Syntactic Authenticity: Sentence structure faithfulness
|
| 981 |
-
- Expression Frequency: Appropriate use of character phrases
|
| 982 |
-
- Tonal Accuracy: Emotional delivery matching character personality
|
| 983 |
-
|
| 984 |
LINGUISTIC AUTHENTICITY FOCUS: Prioritize HOW the character speaks over WHAT they say for maximum believability."""
|
| 985 |
|
| 986 |
-
def ai_character_knowledge_mapper(self, character_name: str = "character", topic: str = "", ai_system: str = "
|
| 987 |
-
"""Universal Character Knowledge Mapping -
|
| 988 |
|
|
|
|
| 989 |
knowledge_template = {
|
| 990 |
"expert_knowledge": [
|
| 991 |
"Character's professional expertise",
|
| 992 |
-
"Life experience areas",
|
| 993 |
"Specialized skills and interests"
|
| 994 |
],
|
| 995 |
"general_knowledge": [
|
|
@@ -1009,102 +719,73 @@ LINGUISTIC AUTHENTICITY FOCUS: Prioritize HOW the character speaks over WHAT the
|
|
| 1009 |
]
|
| 1010 |
}
|
| 1011 |
|
| 1012 |
-
return f"""π§ UNIVERSAL CHARACTER KNOWLEDGE MAPPER
|
| 1013 |
Character: {character_name}
|
| 1014 |
AI Platform: {ai_system}
|
| 1015 |
{f"Topic Analysis: {topic}" if topic else "General Knowledge Profile"}
|
| 1016 |
-
MCP Monitoring: ACTIVE
|
| 1017 |
-
|
| 1018 |
KNOWLEDGE FRAMEWORK:
|
| 1019 |
Expert Level (Confident & Accurate):
|
| 1020 |
{chr(10).join(f"β {item}" for item in knowledge_template['expert_knowledge'])}
|
| 1021 |
-
|
| 1022 |
General Knowledge (Reliable):
|
| 1023 |
{chr(10).join(f"β {item}" for item in knowledge_template['general_knowledge'])}
|
| 1024 |
-
|
| 1025 |
Limited Knowledge (Uncertain):
|
| 1026 |
{chr(10).join(f"β³ {item}" for item in knowledge_template['limited_knowledge'])}
|
| 1027 |
-
|
| 1028 |
False Confidence (Confidently Wrong):
|
| 1029 |
{chr(10).join(f"β {item}" for item in knowledge_template['false_confidence'])}
|
| 1030 |
-
|
| 1031 |
-
MCP KNOWLEDGE TRACKING:
|
| 1032 |
-
- Real-time knowledge boundary compliance monitoring
|
| 1033 |
-
- Expert vs. limited knowledge usage patterns tracked
|
| 1034 |
-
- False confidence detection and scoring
|
| 1035 |
-
- Knowledge appropriateness validation for character authenticity
|
| 1036 |
-
|
| 1037 |
IMPLEMENTATION STRATEGY:
|
| 1038 |
β’ Map character's educational background and life experiences
|
| 1039 |
β’ Define professional expertise and skill areas
|
| 1040 |
β’ Identify knowledge gaps and limitations authentically
|
| 1041 |
β’ Note areas where character has misconceptions
|
| 1042 |
β’ Balance authenticity with narrative requirements
|
| 1043 |
-
|
| 1044 |
CROSS-PLATFORM DEPLOYMENT:
|
| 1045 |
-
β’ MCP-Claude: Real-time knowledge boundary monitoring with feedback
|
| 1046 |
β’ OpenAI: Use knowledge constraints in system prompts
|
| 1047 |
β’ Anthropic: Implement via character background context
|
| 1048 |
β’ Local Models: Fine-tune on character-appropriate knowledge
|
| 1049 |
-
|
| 1050 |
AUTHENTICITY PRINCIPLE: Characters are more believable when they have realistic knowledge limitations and occasional misconceptions."""
|
| 1051 |
|
| 1052 |
-
def ai_character_consistency_validator(self, character_name: str = "character", response_text: str = "", ai_system: str = "
|
| 1053 |
-
"""Universal Character Consistency Validation -
|
| 1054 |
-
|
| 1055 |
-
# Simulate MCP analysis if response provided
|
| 1056 |
-
consistency_score = random.uniform(0.75, 0.95) if response_text else 0.0
|
| 1057 |
-
authenticity_score = random.uniform(0.70, 0.92) if response_text else 0.0
|
| 1058 |
|
| 1059 |
-
return f"""β
UNIVERSAL CHARACTER CONSISTENCY VALIDATOR
|
| 1060 |
Character: {character_name}
|
| 1061 |
AI Platform: {ai_system}
|
| 1062 |
Response Length: {len(response_text)} characters
|
| 1063 |
{f"Sample: {response_text[:100]}..." if response_text else "Awaiting response validation"}
|
| 1064 |
-
MCP Analysis: ACTIVE
|
| 1065 |
-
|
| 1066 |
CONSISTENCY CHECK FRAMEWORK:
|
| 1067 |
β‘ Character Voice: Speech patterns and vocabulary alignment
|
| 1068 |
β‘ Personality Traits: Behavioral consistency with character profile
|
| 1069 |
β‘ Knowledge Boundaries: Appropriate knowledge level for character
|
| 1070 |
β‘ Emotional Range: Reactions consistent with character psychology
|
| 1071 |
β‘ Background Elements: References align with character history
|
| 1072 |
-
|
| 1073 |
-
MCP VALIDATION METRICS:
|
| 1074 |
-
β’ Consistency Score: {consistency_score:.1%} {"β
" if consistency_score > 0.8 else "β οΈ" if consistency_score > 0.6 else "β"}
|
| 1075 |
-
β’ Authenticity Score: {authenticity_score:.1%} {"β
" if authenticity_score > 0.8 else "β οΈ" if authenticity_score > 0.6 else "β"}
|
| 1076 |
-
β’ Real-time Analysis: {"ACTIVE" if response_text else "PENDING"}
|
| 1077 |
-
|
| 1078 |
VALIDATION CRITERIA:
|
| 1079 |
β’ VOICE CONSISTENCY: Does this sound like {character_name}?
|
| 1080 |
β’ BEHAVIORAL ALIGNMENT: Are actions consistent with personality?
|
| 1081 |
β’ KNOWLEDGE APPROPRIATENESS: Is expertise level accurate for character?
|
| 1082 |
β’ TIMELINE COHERENCE: Do references match character's era/background?
|
| 1083 |
β’ RELATIONSHIP DYNAMICS: Are interactions appropriate for character?
|
| 1084 |
-
|
| 1085 |
RED FLAGS TO MONITOR:
|
| 1086 |
β οΈ Modern references from historical characters
|
| 1087 |
β οΈ Technical knowledge beyond character scope
|
| 1088 |
β οΈ Personality traits contradicting established profile
|
| 1089 |
β οΈ Inconsistent speech patterns or vocabulary
|
| 1090 |
β οΈ Knowledge that character shouldn't possess
|
| 1091 |
-
|
| 1092 |
PLATFORM-SPECIFIC IMPLEMENTATION:
|
| 1093 |
-
β’ MCP-Claude: Real-time validation with detailed scoring and feedback
|
| 1094 |
β’ OpenAI: Use validation prompts or secondary model checking
|
| 1095 |
β’ Anthropic: Implement consistency review in conversation flow
|
| 1096 |
β’ Local Models: Build validation into generation pipeline
|
|
|
|
|
|
|
|
|
|
| 1097 |
|
| 1098 |
-
|
| 1099 |
-
|
| 1100 |
-
|
| 1101 |
-
def ai_character_adaptation_engine(self, character_trait: str = "curious", ai_capability: str = "analysis", ai_system: str = "MCP-Claude") -> str:
|
| 1102 |
-
"""Universal Character-AI Capability Bridge - MCP Enhanced"""
|
| 1103 |
|
| 1104 |
trait_mappings = {
|
| 1105 |
"curious": {
|
| 1106 |
"analysis": "Channel AI analytical power through character's natural curiosity",
|
| 1107 |
-
"research": "Use AI research capabilities as character's investigative drive",
|
| 1108 |
"problem_solving": "Apply AI logic through character's exploratory nature"
|
| 1109 |
},
|
| 1110 |
"skeptical": {
|
|
@@ -1124,83 +805,463 @@ RECOMMENDATION: {"Continue with current approach" if consistency_score > 0.8 els
|
|
| 1124 |
}
|
| 1125 |
}
|
| 1126 |
|
| 1127 |
-
mapping = trait_mappings.get(character_trait, {}).get(ai_capability,
|
| 1128 |
f"Channel AI {ai_capability} capabilities through {character_trait} character perspective")
|
| 1129 |
|
| 1130 |
-
return f"""π UNIVERSAL CHARACTER-AI ADAPTATION ENGINE
|
| 1131 |
Character Trait: {character_trait.title()}
|
| 1132 |
AI Capability: {ai_capability.title()}
|
| 1133 |
Target Platform: {ai_system}
|
| 1134 |
-
MCP Integration: ACTIVE
|
| 1135 |
-
|
| 1136 |
ADAPTATION STRATEGY: {mapping}
|
| 1137 |
-
|
| 1138 |
-
MCP ADAPTATION TRACKING:
|
| 1139 |
-
- Real-time monitoring of trait-capability integration effectiveness
|
| 1140 |
-
- Character authenticity preservation during AI capability usage
|
| 1141 |
-
- Adaptation success rate measurement and optimization
|
| 1142 |
-
- Capability expression naturalness scoring
|
| 1143 |
-
|
| 1144 |
INTEGRATION PRINCIPLES:
|
| 1145 |
β’ Don't suppress AI capabilities - redirect them through character lens
|
| 1146 |
β’ Use character traits as natural outlets for AI strengths
|
| 1147 |
β’ Maintain character authenticity while leveraging AI power
|
| 1148 |
β’ Find character-appropriate ways to express AI analytical abilities
|
| 1149 |
β’ Balance character limitations with AI capabilities
|
| 1150 |
-
|
| 1151 |
IMPLEMENTATION FRAMEWORK:
|
| 1152 |
Character Perspective + AI Capability = Authentic Enhanced Response
|
| 1153 |
-
|
| 1154 |
PLATFORM-SPECIFIC DEPLOYMENT:
|
| 1155 |
-
β’ MCP-Claude: Real-time adaptation monitoring with performance feedback
|
| 1156 |
β’ OpenAI: Implement via system prompt engineering and function calling
|
| 1157 |
β’ Anthropic: Use character context to guide AI capability expression
|
| 1158 |
β’ Local Models: Fine-tune response generation with character filters
|
| 1159 |
-
|
| 1160 |
EXAMPLE INTEGRATION:
|
| 1161 |
{character_trait.title()} Character + AI {ai_capability.title()} = {mapping}
|
|
|
|
| 1162 |
|
| 1163 |
-
|
| 1164 |
-
|
| 1165 |
-
def ai_character_blending_protocol(self, primary_character: str = "main_character", secondary_traits: str = "helpful", blend_ratio: float = 0.7, ai_system: str = "MCP-Claude") -> str:
|
| 1166 |
-
"""Universal Character Blending System - MCP Enhanced"""
|
| 1167 |
|
| 1168 |
-
return f"""π UNIVERSAL CHARACTER BLENDING PROTOCOL
|
| 1169 |
Primary Character: {primary_character} ({int(blend_ratio * 100)}%)
|
| 1170 |
Secondary Traits: {secondary_traits} ({int((1 - blend_ratio) * 100)}%)
|
| 1171 |
AI Platform: {ai_system}
|
| 1172 |
-
MCP Monitoring: ACTIVE
|
| 1173 |
-
|
| 1174 |
BLENDING FRAMEWORK:
|
| 1175 |
β’ Primary character provides core personality, speech patterns, and worldview
|
| 1176 |
β’ Secondary traits influence response approach and capability expression
|
| 1177 |
β’ Blend maintains primary authenticity while incorporating secondary elements
|
| 1178 |
β’ Secondary traits solve character limitations through authentic integration
|
| 1179 |
-
|
| 1180 |
-
MCP BLENDING ANALYTICS:
|
| 1181 |
-
- Real-time blend ratio adherence monitoring
|
| 1182 |
-
- Primary character authenticity preservation tracking
|
| 1183 |
-
- Secondary trait integration effectiveness scoring
|
| 1184 |
-
- Blend stability and consistency measurement
|
| 1185 |
-
|
| 1186 |
BLEND RATIO IMPLEMENTATION:
|
| 1187 |
β’ 90%+: Nearly pure primary character with minimal secondary influence
|
| 1188 |
β’ 70-80%: Strong character identity with secondary traits providing framework
|
| 1189 |
β’ 50-60%: Balanced hybrid with equal character and secondary trait weighting
|
| 1190 |
β’ 30-40%: Primarily secondary traits with character flavoring
|
| 1191 |
β’ 10-20%: Minimal character influence over standard AI behavior
|
| 1192 |
-
|
| 1193 |
CROSS-PLATFORM DEPLOYMENT:
|
| 1194 |
-
β’ MCP-Claude: Real-time blend monitoring with performance analytics
|
| 1195 |
β’ OpenAI: Use system prompts with weighted character instructions
|
| 1196 |
β’ Anthropic: Implement via character context with capability balance
|
| 1197 |
β’ Local Models: Adjust generation parameters and prompt weighting
|
| 1198 |
-
|
| 1199 |
QUALITY CONTROL PRINCIPLES:
|
| 1200 |
β Blend feels natural and integrated, not schizophrenic
|
| 1201 |
β Primary character authenticity remains intact
|
| 1202 |
β Secondary traits enhance rather than conflict with character
|
| 1203 |
β User needs are met through character-appropriate responses
|
| 1204 |
β Blend ratio remains consistent throughout interaction
|
|
|
|
| 1205 |
|
| 1206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
+
π Universal AI Character Management Platform
|
| 4 |
+
Professional-grade character consistency and adaptation tools for any AI system
|
| 5 |
+
What is this?
|
| 6 |
+
-----------
|
| 7 |
+
A comprehensive framework for managing AI character personas with persistence, consistency tracking,
|
| 8 |
+
and professional-grade adaptation tools. Works with OpenAI, Anthropic, local models, and any AI system.
|
| 9 |
+
How does it work?
|
| 10 |
+
----------------
|
| 11 |
+
1. CHARACTER STATE MANAGEMENT: Persistent memory and personality tracking across sessions
|
| 12 |
+
2. ADAPTATION PROTOCOLS: Fine-grained control over character intensity and behavior
|
| 13 |
+
3. CONSISTENCY VALIDATION: Real-time quality scoring and coherence checking
|
| 14 |
+
4. MEMORY PERSISTENCE: SQLite-backed character memory that persists across sessions
|
| 15 |
+
5. UNIVERSAL MCP TOOLS: Work with any AI system via standardized prompting protocols
|
| 16 |
+
Why would you use it?
|
| 17 |
+
--------------------
|
| 18 |
+
β’ BUSINESS: Maintain consistent brand voice across customer interactions
|
| 19 |
+
β’ ENTERTAINMENT: Create persistent characters for games, stories, interactive media
|
| 20 |
+
β’ EDUCATION: Deploy consistent teaching personas that remember student interactions
|
| 21 |
+
β’ CUSTOMER SERVICE: Brand-consistent AI representatives that learn and adapt
|
| 22 |
+
β’ CONTENT CREATION: Reliable character voices for marketing, social media, content
|
| 23 |
+
β’ PROFESSIONAL AI MANAGEMENT: Future-proof skills for AI-assisted development
|
| 24 |
+
Target Users:
|
| 25 |
+
β’ AI Engineers building character-driven applications
|
| 26 |
+
β’ Content creators needing consistent AI voices
|
| 27 |
+
β’ Businesses deploying AI customer service
|
| 28 |
+
β’ Game developers creating persistent NPCs
|
| 29 |
+
β’ Anyone who needs AI characters that remember and adapt
|
| 30 |
+
Technical Stack:
|
| 31 |
+
β’ Framework-agnostic character management
|
| 32 |
+
β’ SQLite persistence layer
|
| 33 |
+
β’ Real-time consistency analytics
|
| 34 |
+
β’ Professional MCP (Model Context Protocol) tools
|
| 35 |
+
β’ Example implementation with Creed Bratton character
|
| 36 |
"""
|
| 37 |
|
| 38 |
import os
|
|
|
|
| 49 |
from datetime import datetime, timedelta
|
| 50 |
import logging
|
| 51 |
from pathlib import Path
|
|
|
|
| 52 |
|
| 53 |
# GPU acceleration support
|
| 54 |
try:
|
|
|
|
| 60 |
except ImportError:
|
| 61 |
SPACES_AVAILABLE = False
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
class UniversalCharacterManager:
|
| 64 |
"""
|
| 65 |
+
Universal AI Character Management System
|
| 66 |
|
| 67 |
Framework-agnostic character state management with persistence, consistency tracking,
|
| 68 |
+
and professional adaptation tools. Works with any AI system.
|
| 69 |
"""
|
| 70 |
|
| 71 |
def __init__(self, character_name: str = "creed", model_path: str = "phxdev/creed-qwen-0.5b-lora"):
|
| 72 |
self.character_name = character_name
|
| 73 |
self.model_path = model_path
|
| 74 |
|
| 75 |
+
# Core AI model management
|
| 76 |
self.model = None
|
| 77 |
self.tokenizer = None
|
| 78 |
self.model_loaded = False
|
|
|
|
| 89 |
self.persona_facts = {}
|
| 90 |
self.conversation_history = []
|
| 91 |
|
| 92 |
+
# Professional analytics and tracking
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
self.character_metrics = {
|
| 94 |
"consistency_score": 0.0,
|
| 95 |
"authenticity_score": 0.0,
|
| 96 |
"adaptation_rate": 0.0,
|
| 97 |
+
"memory_retention": 0.0
|
|
|
|
|
|
|
|
|
|
| 98 |
}
|
| 99 |
|
| 100 |
+
# Initialize persistent character systems
|
| 101 |
self._setup_character_persistence()
|
|
|
|
| 102 |
|
| 103 |
+
print(f"π Initializing Universal Character Manager")
|
| 104 |
print(f"π Character: {character_name}")
|
| 105 |
print(f"π§ Session ID: {self.session_id}")
|
|
|
|
| 106 |
print(f"π₯οΈ Device: {self.device}")
|
| 107 |
|
| 108 |
if torch.cuda.is_available():
|
| 109 |
print(f"π GPU: {torch.cuda.get_device_name()}")
|
| 110 |
print(f"πΎ GPU Memory: {torch.cuda.get_device_properties(0).total_memory // 1024**3} GB")
|
| 111 |
|
| 112 |
+
# Load demonstration model (Creed example)
|
| 113 |
self.load_demonstration_model()
|
| 114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
def _generate_session_id(self) -> str:
|
| 116 |
"""Generate unique session ID for character state tracking"""
|
| 117 |
timestamp = datetime.now().isoformat()
|
|
|
|
| 170 |
print(f"β οΈ Character persistence setup failed (non-critical): {e}")
|
| 171 |
|
| 172 |
def load_demonstration_model(self):
|
| 173 |
+
"""
|
| 174 |
+
Load demonstration model (Creed Bratton example)
|
| 175 |
+
In production, this would be replaced with your target AI system integration
|
| 176 |
+
"""
|
| 177 |
if self.loading or self.model_loaded:
|
| 178 |
return
|
| 179 |
|
|
|
|
| 189 |
padding_side="left"
|
| 190 |
)
|
| 191 |
|
| 192 |
+
# Character-specific tokens (customizable for any character)
|
| 193 |
character_tokens = ["<thinking>", "<memory>", "<adapt>", "<authentic>"]
|
| 194 |
print(f"π Adding character tokens: {character_tokens}")
|
| 195 |
|
|
|
|
| 204 |
self.model = AutoModelForCausalLM.from_pretrained(
|
| 205 |
self.model_path,
|
| 206 |
torch_dtype=torch.float16,
|
| 207 |
+
device_map=None, # CPU first for GPU burst compatibility
|
| 208 |
trust_remote_code=True,
|
| 209 |
low_cpu_mem_usage=True
|
| 210 |
)
|
|
|
|
| 220 |
|
| 221 |
except Exception as e:
|
| 222 |
print(f"β Model loading failed: {e}")
|
| 223 |
+
print("π‘ Note: In production, integrate with your preferred AI API (OpenAI, Anthropic, etc.)")
|
| 224 |
self.loading = False
|
| 225 |
|
| 226 |
@spaces.GPU if SPACES_AVAILABLE else lambda func: func
|
| 227 |
def generate_character_response(self, conversation: str, temperature: float = 0.9) -> str:
|
| 228 |
+
"""
|
| 229 |
+
Generate character response using loaded model
|
| 230 |
+
In production: Replace with API calls to OpenAI, Anthropic, etc.
|
| 231 |
+
"""
|
| 232 |
|
| 233 |
if not self.model_loaded:
|
| 234 |
return "β Demonstration model not loaded. In production, this would call your AI API."
|
|
|
|
| 269 |
print(f"β Generation error: {e}")
|
| 270 |
return "π Character processing encountered an issue. Please try again."
|
| 271 |
|
| 272 |
+
def process_user_interaction(self, message: str, history: List[List[str]]) -> Iterator[str]:
|
| 273 |
+
"""
|
| 274 |
+
Main character interaction processor with universal analytics
|
| 275 |
+
"""
|
| 276 |
+
|
| 277 |
+
if not self.model_loaded and self.loading:
|
| 278 |
+
yield "π§ Character system loading... please wait..."
|
| 279 |
+
return
|
| 280 |
+
elif not self.model_loaded:
|
| 281 |
+
yield "π‘ Demonstration mode: In production, this integrates with your AI API (OpenAI, Anthropic, etc.)"
|
| 282 |
+
return
|
| 283 |
+
|
| 284 |
+
try:
|
| 285 |
+
# Format conversation for character context
|
| 286 |
+
conversation = self._format_character_conversation(message, history)
|
| 287 |
+
|
| 288 |
+
# Generate character response
|
| 289 |
+
response = self.generate_character_response(conversation)
|
| 290 |
+
|
| 291 |
+
# Analyze response quality
|
| 292 |
+
consistency_score = self._analyze_response_consistency(response)
|
| 293 |
+
authenticity_score = self._analyze_response_authenticity(response)
|
| 294 |
+
|
| 295 |
+
# Update character metrics
|
| 296 |
+
self._update_character_metrics(consistency_score, authenticity_score)
|
| 297 |
+
|
| 298 |
+
# Store interaction for persistence
|
| 299 |
+
self._store_character_interaction(message, response, consistency_score, authenticity_score)
|
| 300 |
+
|
| 301 |
+
# Stream response with dynamic pacing
|
| 302 |
+
words = response.split()
|
| 303 |
+
current_response = ""
|
| 304 |
+
|
| 305 |
+
for i, word in enumerate(words):
|
| 306 |
+
current_response += word + " "
|
| 307 |
+
# Dynamic streaming based on content
|
| 308 |
+
delay = 0.05
|
| 309 |
+
if word.endswith(('.', '!', '?')):
|
| 310 |
+
delay = 0.1
|
| 311 |
+
elif any(dramatic in word.lower() for dramatic in ["mysterious", "dangerous", "secret"]):
|
| 312 |
+
delay = 0.08
|
| 313 |
+
|
| 314 |
+
time.sleep(delay)
|
| 315 |
+
yield current_response.strip()
|
| 316 |
+
|
| 317 |
+
except Exception as e:
|
| 318 |
+
print(f"β Character interaction error: {e}")
|
| 319 |
+
yield "π Character system encountered an issue. Please try again."
|
| 320 |
+
|
| 321 |
def _format_character_conversation(self, message: str, history: List[List[str]]) -> str:
|
| 322 |
+
"""
|
| 323 |
+
Universal character conversation formatting
|
| 324 |
+
Easily customizable for different characters and AI systems
|
| 325 |
+
"""
|
| 326 |
|
| 327 |
+
# Character-specific system prompt (easily modifiable)
|
| 328 |
character_prompt = f"""You are {self.character_name}. Maintain character consistency.
|
| 329 |
Use character tokens when appropriate:
|
| 330 |
<thinking>for internal character thoughts</thinking>
|
|
|
|
| 342 |
conversation = character_prompt
|
| 343 |
|
| 344 |
# Include relevant conversation history
|
| 345 |
+
for user_msg, char_msg in history[-4:]: # Configurable context window
|
| 346 |
conversation += f"Human: {user_msg}\n"
|
| 347 |
conversation += f"{self.character_name}: {char_msg}\n"
|
| 348 |
|
|
|
|
| 395 |
|
| 396 |
# Analyze response length appropriateness
|
| 397 |
words = response.split()
|
| 398 |
+
if len(words) > 100: # Too verbose
|
| 399 |
score -= 0.1
|
| 400 |
+
elif len(words) < 5: # Too brief
|
| 401 |
score -= 0.2
|
| 402 |
|
| 403 |
# Check for repetition
|
|
|
|
| 410 |
|
| 411 |
def _analyze_response_authenticity(self, response: str) -> float:
|
| 412 |
"""Analyze how authentic the response feels for the character"""
|
| 413 |
+
# This would be customized based on the specific character
|
| 414 |
+
# For demonstration purposes, using Creed-specific authenticity markers
|
| 415 |
|
| 416 |
authenticity_markers = {
|
| 417 |
"positive": ["quarry", "mung", "sheriff", "fake", "mysterious", "business"],
|
|
|
|
| 436 |
return max(0.0, min(1.0, score))
|
| 437 |
|
| 438 |
def _update_character_metrics(self, consistency: float, authenticity: float):
|
| 439 |
+
"""Update character performance metrics"""
|
| 440 |
self.conversation_quality_scores.append(consistency)
|
| 441 |
if len(self.conversation_quality_scores) > 20:
|
| 442 |
self.conversation_quality_scores = self.conversation_quality_scores[-20:]
|
|
|
|
| 445 |
self.character_metrics["consistency_score"] = sum(self.conversation_quality_scores) / len(self.conversation_quality_scores)
|
| 446 |
self.character_metrics["authenticity_score"] = authenticity
|
| 447 |
|
| 448 |
+
# Calculate adaptation rate (how much character is improving)
|
| 449 |
if len(self.conversation_quality_scores) > 5:
|
| 450 |
recent_avg = sum(self.conversation_quality_scores[-5:]) / 5
|
| 451 |
older_avg = sum(self.conversation_quality_scores[-10:-5]) / 5 if len(self.conversation_quality_scores) >= 10 else recent_avg
|
| 452 |
self.character_metrics["adaptation_rate"] = recent_avg - older_avg
|
| 453 |
|
| 454 |
def _store_character_interaction(self, user_input: str, response: str, consistency: float, authenticity: float):
|
| 455 |
+
"""Store interaction in character persistence system"""
|
| 456 |
try:
|
| 457 |
conn = sqlite3.connect(self.memory_db_path)
|
| 458 |
cursor = conn.cursor()
|
|
|
|
| 476 |
print(f"β οΈ Character persistence failed (non-critical): {e}")
|
| 477 |
|
| 478 |
def get_character_analytics(self) -> Dict[str, Any]:
|
| 479 |
+
"""Get comprehensive character performance analytics"""
|
| 480 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 481 |
conn = sqlite3.connect(self.memory_db_path)
|
| 482 |
cursor = conn.cursor()
|
| 483 |
|
| 484 |
+
# Session statistics
|
| 485 |
cursor.execute('''
|
| 486 |
SELECT
|
| 487 |
AVG(consistency_score),
|
|
|
|
| 498 |
interaction_count = result[2]
|
| 499 |
last_interaction = result[3]
|
| 500 |
|
| 501 |
+
# Recent performance trend
|
| 502 |
+
cursor.execute('''
|
| 503 |
+
SELECT consistency_score, authenticity_score
|
| 504 |
+
FROM character_interactions
|
| 505 |
+
WHERE session_id = ?
|
| 506 |
+
ORDER BY timestamp DESC LIMIT 10
|
| 507 |
+
''', (self.session_id,))
|
| 508 |
+
|
| 509 |
+
recent_scores = cursor.fetchall()
|
| 510 |
+
|
| 511 |
conn.close()
|
| 512 |
|
| 513 |
return {
|
|
|
|
| 517 |
"avg_consistency": round(avg_consistency, 3),
|
| 518 |
"avg_authenticity": round(avg_authenticity, 3),
|
| 519 |
"last_interaction": last_interaction,
|
| 520 |
+
"recent_performance": recent_scores,
|
| 521 |
"current_metrics": self.character_metrics,
|
| 522 |
+
"improvement_trend": "improving" if self.character_metrics["adaptation_rate"] > 0 else "stable"
|
|
|
|
| 523 |
}
|
| 524 |
|
| 525 |
except Exception as e:
|
| 526 |
return {"error": str(e)}
|
| 527 |
|
| 528 |
+
# =================== UNIVERSAL AI CHARACTER MANAGEMENT TOOLS ===================
|
| 529 |
+
# These tools work with ANY AI system (OpenAI, Anthropic, local models, etc.)
|
| 530 |
|
| 531 |
+
def ai_character_activation_tool(self, character_name: str = "professional_assistant", ai_system: str = "any") -> str:
|
| 532 |
+
"""Universal AI Character Activation - Works with any AI system"""
|
| 533 |
+
return f"""π UNIVERSAL CHARACTER ACTIVATION PROTOCOL
|
| 534 |
Character: {character_name}
|
| 535 |
+
AI System: {ai_system} (OpenAI, Anthropic, Local Model, etc.)
|
|
|
|
|
|
|
| 536 |
ACTIVATION INSTRUCTIONS:
|
| 537 |
You are now {character_name}. Embody this character's complete personality and maintain consistency across all interactions.
|
|
|
|
| 538 |
CORE CHARACTER FRAMEWORK:
|
| 539 |
- Establish clear personality traits and speaking patterns
|
| 540 |
+
- Maintain character voice and perspective consistently
|
| 541 |
- Reference character background and experiences naturally
|
| 542 |
- Show character growth while preserving core identity
|
| 543 |
- Use character-specific knowledge and limitations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 544 |
PROFESSIONAL GUIDELINES:
|
| 545 |
- Maintain character authenticity without sacrificing helpfulness
|
| 546 |
- Balance character traits with professional requirements
|
| 547 |
- Adapt character intensity based on context (business vs. creative)
|
| 548 |
- Remember: You are {character_name}, not a generic AI assistant
|
| 549 |
+
CONSISTENCY PROTOCOLS:
|
|
|
|
| 550 |
- Reference established character facts and history
|
| 551 |
- Maintain speech patterns and vocabulary consistently
|
| 552 |
- Show character reactions that align with personality
|
| 553 |
- Build on previous interactions and character development
|
| 554 |
+
Universal Note: This protocol works with any AI system. Adjust implementation based on your specific AI platform's capabilities."""
|
| 555 |
|
| 556 |
+
def ai_character_memory_system(self, character_name: str = "character", memory_facts: str = "", ai_system: str = "any") -> str:
|
| 557 |
+
"""Universal Character Memory Management - Platform Agnostic"""
|
|
|
|
|
|
|
| 558 |
if memory_facts:
|
| 559 |
if character_name not in self.persona_facts:
|
| 560 |
self.persona_facts[character_name] = []
|
|
|
|
| 562 |
|
| 563 |
established_facts = self.persona_facts.get(character_name, [])
|
| 564 |
|
| 565 |
+
return f"""π§ UNIVERSAL CHARACTER MEMORY SYSTEM
|
| 566 |
Character: {character_name}
|
| 567 |
AI Platform: {ai_system}
|
| 568 |
Memory Bank Status: {len(established_facts)} facts stored
|
|
|
|
|
|
|
| 569 |
STORED CHARACTER FACTS:
|
| 570 |
{chr(10).join(f"β’ {fact}" for fact in established_facts[-10:]) if established_facts else "β’ No facts established yet"}
|
|
|
|
| 571 |
MEMORY INTEGRATION INSTRUCTIONS:
|
| 572 |
- These facts are now part of {character_name}'s established identity
|
| 573 |
- Reference them naturally in conversations without explicitly mentioning "memory"
|
| 574 |
- Build upon these facts with related details and experiences
|
| 575 |
- Maintain consistency with all established character elements
|
| 576 |
- Use these facts as foundation for authentic character responses
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 577 |
CROSS-PLATFORM COMPATIBILITY:
|
| 578 |
This memory system works with:
|
|
|
|
| 579 |
β OpenAI GPT models (via system prompts)
|
| 580 |
β Anthropic Claude (via context)
|
| 581 |
β Local models (via prompt engineering)
|
| 582 |
+
β Any AI system supporting character context
|
| 583 |
+
{f"NEW MEMORY ADDED: {memory_facts}" if memory_facts else "Use this memory bank to maintain character consistency across all AI platforms"}"""
|
| 584 |
|
| 585 |
+
def ai_character_intensity_controller(self, character_name: str = "character", intensity: float = 0.8, context: str = "general", ai_system: str = "any") -> str:
|
| 586 |
+
"""Universal Character Intensity Control - Works across all AI platforms"""
|
|
|
|
|
|
|
| 587 |
|
| 588 |
intensity_levels = {
|
| 589 |
0.9: f"MAXIMUM CHARACTER MODE: Full {character_name} immersion, minimal generic AI responses",
|
| 590 |
+
0.7: f"HIGH CHARACTER MODE: Strong {character_name} traits with professional capability",
|
| 591 |
0.5: f"BALANCED MODE: Equal character authenticity and AI helpfulness",
|
| 592 |
0.3: f"LIGHT CHARACTER MODE: Primarily helpful AI with {character_name} flavor",
|
| 593 |
0.1: f"MINIMAL CHARACTER MODE: Mostly standard AI with subtle character hints"
|
|
|
|
| 605 |
base_instruction = intensity_levels[closest_intensity]
|
| 606 |
context_instruction = context_adjustments.get(context, "Standard character behavior")
|
| 607 |
|
| 608 |
+
return f"""βοΈ UNIVERSAL CHARACTER INTENSITY CONTROL
|
| 609 |
Character: {character_name}
|
| 610 |
AI Platform: {ai_system}
|
| 611 |
Intensity Level: {int(intensity * 100)}%
|
| 612 |
Context: {context.title()}
|
|
|
|
|
|
|
| 613 |
INTENSITY SETTING: {base_instruction}
|
| 614 |
CONTEXT ADAPTATION: {context_instruction}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 615 |
IMPLEMENTATION INSTRUCTIONS:
|
| 616 |
- Maintain {character_name} authenticity at {int(intensity * 100)}% intensity
|
| 617 |
- Preserve underlying AI helpfulness and capability
|
| 618 |
- Adapt character expression to {context} context requirements
|
| 619 |
- Balance character traits with practical effectiveness
|
| 620 |
- Ensure responses serve user needs while maintaining character integrity
|
|
|
|
| 621 |
PLATFORM-SPECIFIC INTEGRATION:
|
|
|
|
| 622 |
β’ OpenAI: Implement via system prompts and temperature settings
|
| 623 |
β’ Anthropic: Use character context with helpfulness balance
|
| 624 |
β’ Local Models: Adjust via prompt engineering and generation parameters
|
| 625 |
+
β’ Custom AI: Integrate intensity control into character prompt templates
|
| 626 |
+
QUALITY ASSURANCE: All responses should be both character-authentic AND genuinely useful for {context} applications."""
|
| 627 |
|
| 628 |
+
def ai_character_break_protocol(self, reason: str = "clarification", ai_system: str = "any") -> str:
|
| 629 |
+
"""Universal Character Break Protocol - Platform Agnostic"""
|
|
|
|
|
|
|
| 630 |
|
| 631 |
break_protocols = {
|
| 632 |
"clarification": "Temporarily step out of character to provide clear information, then return",
|
|
|
|
| 638 |
|
| 639 |
protocol = break_protocols.get(reason, "General character break for user clarity")
|
| 640 |
|
| 641 |
+
return f"""π¨ UNIVERSAL CHARACTER BREAK PROTOCOL
|
| 642 |
AI Platform: {ai_system}
|
| 643 |
Break Reason: {reason.title()}
|
| 644 |
Protocol: {protocol}
|
|
|
|
|
|
|
| 645 |
BREAK EXECUTION INSTRUCTIONS:
|
| 646 |
1. Signal break clearly: "Stepping out of character briefly..."
|
| 647 |
2. Address the specific need: {reason}
|
| 648 |
3. Provide clear, direct response in standard AI voice
|
| 649 |
4. Signal return: "Returning to character now..."
|
| 650 |
5. Resume character seamlessly without meta-commentary
|
| 651 |
+
BREAK TRIGGERS (Universal):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 652 |
β’ Safety concerns always override character maintenance
|
| 653 |
β’ Technical accuracy requirements that conflict with character knowledge
|
| 654 |
β’ User explicitly requests non-character response
|
| 655 |
β’ Business-critical communications requiring professional clarity
|
| 656 |
β’ Ethical considerations that require AI transparency
|
|
|
|
|
|
|
| 657 |
PLATFORM IMPLEMENTATION:
|
|
|
|
| 658 |
β’ OpenAI: Use function calling or system prompt modification
|
| 659 |
β’ Anthropic: Implement via explicit instruction following
|
| 660 |
β’ Local Models: Program break triggers into generation logic
|
| 661 |
+
β’ Custom Systems: Build break protocols into character management layer
|
| 662 |
RETURN STRATEGY: Resume character naturally as if break was a brief pause in character's thought process."""
|
| 663 |
|
| 664 |
+
def ai_character_speech_analyzer(self, character_name: str = "character", sample_text: str = "", ai_system: str = "any") -> str:
|
| 665 |
+
"""Universal Speech Pattern Analysis - Works with any AI platform"""
|
| 666 |
|
| 667 |
+
return f"""π£οΈ UNIVERSAL SPEECH PATTERN ANALYZER
|
| 668 |
Character: {character_name}
|
| 669 |
AI Platform: {ai_system}
|
| 670 |
{f"Sample Analysis: {sample_text[:100]}..." if sample_text else "General Pattern Analysis"}
|
|
|
|
|
|
|
| 671 |
SPEECH PATTERN FRAMEWORK:
|
| 672 |
β’ VOCABULARY: Character-specific word choices and terminology
|
| 673 |
+
β’ SYNTAX: Unique sentence structure and rhythm patterns
|
| 674 |
β’ SPEECH TICS: Recurring phrases, expressions, and verbal habits
|
| 675 |
β’ DELIVERY STYLE: Tone, pace, and emotional expression patterns
|
| 676 |
β’ CULTURAL MARKERS: References, slang, and contextual language use
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 677 |
IMPLEMENTATION GUIDE:
|
| 678 |
1. Identify character's unique vocabulary preferences
|
| 679 |
2. Map sentence structure patterns and complexity levels
|
| 680 |
3. Catalog recurring phrases and expressions
|
| 681 |
4. Define emotional expression and tone patterns
|
| 682 |
5. Note cultural/temporal language markers
|
|
|
|
| 683 |
CROSS-PLATFORM ADOPTION:
|
|
|
|
| 684 |
β’ OpenAI: Implement via detailed system prompts with speech examples
|
| 685 |
β’ Anthropic: Use character voice guidelines in context
|
| 686 |
β’ Local Models: Train or fine-tune on character speech patterns
|
| 687 |
+
β’ Custom AI: Build speech pattern templates into generation logic
|
| 688 |
QUALITY METRICS:
|
| 689 |
+
- Vocabulary Consistency: Character word choice alignment
|
| 690 |
+
- Syntactic Authenticity: Sentence structure faithfulness
|
| 691 |
+
- Expression Frequency: Appropriate use of character phrases
|
| 692 |
+
- Tonal Accuracy: Emotional delivery matching character personality
|
|
|
|
| 693 |
LINGUISTIC AUTHENTICITY FOCUS: Prioritize HOW the character speaks over WHAT they say for maximum believability."""
|
| 694 |
|
| 695 |
+
def ai_character_knowledge_mapper(self, character_name: str = "character", topic: str = "", ai_system: str = "any") -> str:
|
| 696 |
+
"""Universal Character Knowledge Mapping - Platform Agnostic"""
|
| 697 |
|
| 698 |
+
# Generic knowledge framework (customizable for any character)
|
| 699 |
knowledge_template = {
|
| 700 |
"expert_knowledge": [
|
| 701 |
"Character's professional expertise",
|
| 702 |
+
"Life experience areas",
|
| 703 |
"Specialized skills and interests"
|
| 704 |
],
|
| 705 |
"general_knowledge": [
|
|
|
|
| 719 |
]
|
| 720 |
}
|
| 721 |
|
| 722 |
+
return f"""π§ UNIVERSAL CHARACTER KNOWLEDGE MAPPER
|
| 723 |
Character: {character_name}
|
| 724 |
AI Platform: {ai_system}
|
| 725 |
{f"Topic Analysis: {topic}" if topic else "General Knowledge Profile"}
|
|
|
|
|
|
|
| 726 |
KNOWLEDGE FRAMEWORK:
|
| 727 |
Expert Level (Confident & Accurate):
|
| 728 |
{chr(10).join(f"β {item}" for item in knowledge_template['expert_knowledge'])}
|
|
|
|
| 729 |
General Knowledge (Reliable):
|
| 730 |
{chr(10).join(f"β {item}" for item in knowledge_template['general_knowledge'])}
|
|
|
|
| 731 |
Limited Knowledge (Uncertain):
|
| 732 |
{chr(10).join(f"β³ {item}" for item in knowledge_template['limited_knowledge'])}
|
|
|
|
| 733 |
False Confidence (Confidently Wrong):
|
| 734 |
{chr(10).join(f"β {item}" for item in knowledge_template['false_confidence'])}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 735 |
IMPLEMENTATION STRATEGY:
|
| 736 |
β’ Map character's educational background and life experiences
|
| 737 |
β’ Define professional expertise and skill areas
|
| 738 |
β’ Identify knowledge gaps and limitations authentically
|
| 739 |
β’ Note areas where character has misconceptions
|
| 740 |
β’ Balance authenticity with narrative requirements
|
|
|
|
| 741 |
CROSS-PLATFORM DEPLOYMENT:
|
|
|
|
| 742 |
β’ OpenAI: Use knowledge constraints in system prompts
|
| 743 |
β’ Anthropic: Implement via character background context
|
| 744 |
β’ Local Models: Fine-tune on character-appropriate knowledge
|
| 745 |
+
β’ Custom AI: Build knowledge filters into response generation
|
| 746 |
AUTHENTICITY PRINCIPLE: Characters are more believable when they have realistic knowledge limitations and occasional misconceptions."""
|
| 747 |
|
| 748 |
+
def ai_character_consistency_validator(self, character_name: str = "character", response_text: str = "", ai_system: str = "any") -> str:
|
| 749 |
+
"""Universal Character Consistency Validation - Works across all platforms"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 750 |
|
| 751 |
+
return f"""β
UNIVERSAL CHARACTER CONSISTENCY VALIDATOR
|
| 752 |
Character: {character_name}
|
| 753 |
AI Platform: {ai_system}
|
| 754 |
Response Length: {len(response_text)} characters
|
| 755 |
{f"Sample: {response_text[:100]}..." if response_text else "Awaiting response validation"}
|
|
|
|
|
|
|
| 756 |
CONSISTENCY CHECK FRAMEWORK:
|
| 757 |
β‘ Character Voice: Speech patterns and vocabulary alignment
|
| 758 |
β‘ Personality Traits: Behavioral consistency with character profile
|
| 759 |
β‘ Knowledge Boundaries: Appropriate knowledge level for character
|
| 760 |
β‘ Emotional Range: Reactions consistent with character psychology
|
| 761 |
β‘ Background Elements: References align with character history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 762 |
VALIDATION CRITERIA:
|
| 763 |
β’ VOICE CONSISTENCY: Does this sound like {character_name}?
|
| 764 |
β’ BEHAVIORAL ALIGNMENT: Are actions consistent with personality?
|
| 765 |
β’ KNOWLEDGE APPROPRIATENESS: Is expertise level accurate for character?
|
| 766 |
β’ TIMELINE COHERENCE: Do references match character's era/background?
|
| 767 |
β’ RELATIONSHIP DYNAMICS: Are interactions appropriate for character?
|
|
|
|
| 768 |
RED FLAGS TO MONITOR:
|
| 769 |
β οΈ Modern references from historical characters
|
| 770 |
β οΈ Technical knowledge beyond character scope
|
| 771 |
β οΈ Personality traits contradicting established profile
|
| 772 |
β οΈ Inconsistent speech patterns or vocabulary
|
| 773 |
β οΈ Knowledge that character shouldn't possess
|
|
|
|
| 774 |
PLATFORM-SPECIFIC IMPLEMENTATION:
|
|
|
|
| 775 |
β’ OpenAI: Use validation prompts or secondary model checking
|
| 776 |
β’ Anthropic: Implement consistency review in conversation flow
|
| 777 |
β’ Local Models: Build validation into generation pipeline
|
| 778 |
+
β’ Custom AI: Create automated consistency scoring systems
|
| 779 |
+
QUALITY ASSURANCE: {"β
Response appears consistent" if response_text and len(response_text) > 10 else "β³ Pending response review"}
|
| 780 |
+
RECOMMENDATION: {"Continue with current approach" if response_text else "Review against character profile before responding"}"""
|
| 781 |
|
| 782 |
+
def ai_character_adaptation_engine(self, character_trait: str = "curious", ai_capability: str = "analysis", ai_system: str = "any") -> str:
|
| 783 |
+
"""Universal Character-AI Capability Bridge - Platform Agnostic"""
|
|
|
|
|
|
|
|
|
|
| 784 |
|
| 785 |
trait_mappings = {
|
| 786 |
"curious": {
|
| 787 |
"analysis": "Channel AI analytical power through character's natural curiosity",
|
| 788 |
+
"research": "Use AI research capabilities as character's investigative drive",
|
| 789 |
"problem_solving": "Apply AI logic through character's exploratory nature"
|
| 790 |
},
|
| 791 |
"skeptical": {
|
|
|
|
| 805 |
}
|
| 806 |
}
|
| 807 |
|
| 808 |
+
mapping = trait_mappings.get(character_trait, {}).get(ai_capability,
|
| 809 |
f"Channel AI {ai_capability} capabilities through {character_trait} character perspective")
|
| 810 |
|
| 811 |
+
return f"""π UNIVERSAL CHARACTER-AI ADAPTATION ENGINE
|
| 812 |
Character Trait: {character_trait.title()}
|
| 813 |
AI Capability: {ai_capability.title()}
|
| 814 |
Target Platform: {ai_system}
|
|
|
|
|
|
|
| 815 |
ADAPTATION STRATEGY: {mapping}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 816 |
INTEGRATION PRINCIPLES:
|
| 817 |
β’ Don't suppress AI capabilities - redirect them through character lens
|
| 818 |
β’ Use character traits as natural outlets for AI strengths
|
| 819 |
β’ Maintain character authenticity while leveraging AI power
|
| 820 |
β’ Find character-appropriate ways to express AI analytical abilities
|
| 821 |
β’ Balance character limitations with AI capabilities
|
|
|
|
| 822 |
IMPLEMENTATION FRAMEWORK:
|
| 823 |
Character Perspective + AI Capability = Authentic Enhanced Response
|
|
|
|
| 824 |
PLATFORM-SPECIFIC DEPLOYMENT:
|
|
|
|
| 825 |
β’ OpenAI: Implement via system prompt engineering and function calling
|
| 826 |
β’ Anthropic: Use character context to guide AI capability expression
|
| 827 |
β’ Local Models: Fine-tune response generation with character filters
|
| 828 |
+
β’ Custom AI: Build character-capability bridges into core architecture
|
| 829 |
EXAMPLE INTEGRATION:
|
| 830 |
{character_trait.title()} Character + AI {ai_capability.title()} = {mapping}
|
| 831 |
+
QUALITY ASSURANCE: Ensure all responses feel naturally character-driven while utilizing full AI capabilities."""
|
| 832 |
|
| 833 |
+
def ai_character_blending_protocol(self, primary_character: str = "main_character", secondary_traits: str = "helpful", blend_ratio: float = 0.7, ai_system: str = "any") -> str:
|
| 834 |
+
"""Universal Character Blending System - Works with any AI platform"""
|
|
|
|
|
|
|
| 835 |
|
| 836 |
+
return f"""π UNIVERSAL CHARACTER BLENDING PROTOCOL
|
| 837 |
Primary Character: {primary_character} ({int(blend_ratio * 100)}%)
|
| 838 |
Secondary Traits: {secondary_traits} ({int((1 - blend_ratio) * 100)}%)
|
| 839 |
AI Platform: {ai_system}
|
|
|
|
|
|
|
| 840 |
BLENDING FRAMEWORK:
|
| 841 |
β’ Primary character provides core personality, speech patterns, and worldview
|
| 842 |
β’ Secondary traits influence response approach and capability expression
|
| 843 |
β’ Blend maintains primary authenticity while incorporating secondary elements
|
| 844 |
β’ Secondary traits solve character limitations through authentic integration
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 845 |
BLEND RATIO IMPLEMENTATION:
|
| 846 |
β’ 90%+: Nearly pure primary character with minimal secondary influence
|
| 847 |
β’ 70-80%: Strong character identity with secondary traits providing framework
|
| 848 |
β’ 50-60%: Balanced hybrid with equal character and secondary trait weighting
|
| 849 |
β’ 30-40%: Primarily secondary traits with character flavoring
|
| 850 |
β’ 10-20%: Minimal character influence over standard AI behavior
|
|
|
|
| 851 |
CROSS-PLATFORM DEPLOYMENT:
|
|
|
|
| 852 |
β’ OpenAI: Use system prompts with weighted character instructions
|
| 853 |
β’ Anthropic: Implement via character context with capability balance
|
| 854 |
β’ Local Models: Adjust generation parameters and prompt weighting
|
| 855 |
+
β’ Custom AI: Build blending ratios into character management system
|
| 856 |
QUALITY CONTROL PRINCIPLES:
|
| 857 |
β Blend feels natural and integrated, not schizophrenic
|
| 858 |
β Primary character authenticity remains intact
|
| 859 |
β Secondary traits enhance rather than conflict with character
|
| 860 |
β User needs are met through character-appropriate responses
|
| 861 |
β Blend ratio remains consistent throughout interaction
|
| 862 |
+
ADAPTATION STRATEGY: Use secondary traits to expand character capabilities while maintaining core authenticity."""
|
| 863 |
|
| 864 |
+
def main():
|
| 865 |
+
"""
|
| 866 |
+
Launch Universal AI Character Management Platform
|
| 867 |
+
Professional demonstration with Creed Bratton character example
|
| 868 |
+
"""
|
| 869 |
+
|
| 870 |
+
print("π INITIALIZING UNIVERSAL AI CHARACTER MANAGEMENT PLATFORM")
|
| 871 |
+
print("=" * 70)
|
| 872 |
+
print("Professional-grade character consistency and adaptation tools")
|
| 873 |
+
print("Compatible with: OpenAI, Anthropic, Local Models, Custom AI Systems")
|
| 874 |
+
print("=" * 70)
|
| 875 |
+
|
| 876 |
+
# Initialize character manager with demonstration character
|
| 877 |
+
character_manager = UniversalCharacterManager(
|
| 878 |
+
character_name="creed",
|
| 879 |
+
model_path="phxdev/creed-qwen-0.5b-lora"
|
| 880 |
+
)
|
| 881 |
+
|
| 882 |
+
if SPACES_AVAILABLE:
|
| 883 |
+
gpu_placeholder()
|
| 884 |
+
print("β
GPU acceleration available for demonstration")
|
| 885 |
+
|
| 886 |
+
# Professional-grade CSS for business applications
|
| 887 |
+
professional_css = '''
|
| 888 |
+
/* Universal AI Character Management Platform - Professional UI */
|
| 889 |
+
:root {
|
| 890 |
+
--primary-gradient: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 891 |
+
--glass-bg: rgba(255, 255, 255, 0.1);
|
| 892 |
+
--glass-border: rgba(255, 255, 255, 0.2);
|
| 893 |
+
--text-primary: #ffffff;
|
| 894 |
+
--text-secondary: rgba(255, 255, 255, 0.8);
|
| 895 |
+
--accent-blue: #3b82f6;
|
| 896 |
+
--accent-purple: #8b5cf6;
|
| 897 |
+
--accent-green: #10b981;
|
| 898 |
+
--professional-shadow: 0 8px 32px rgba(59, 130, 246, 0.3);
|
| 899 |
+
}
|
| 900 |
+
|
| 901 |
+
.gradio-container {
|
| 902 |
+
min-height: 100vh !important;
|
| 903 |
+
background: var(--primary-gradient) !important;
|
| 904 |
+
color: var(--text-primary) !important;
|
| 905 |
+
padding: 20px !important;
|
| 906 |
+
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
|
| 907 |
+
}
|
| 908 |
+
|
| 909 |
+
.platform-header {
|
| 910 |
+
background: var(--glass-bg) !important;
|
| 911 |
+
backdrop-filter: blur(20px) !important;
|
| 912 |
+
border: 1px solid var(--glass-border) !important;
|
| 913 |
+
border-radius: 20px !important;
|
| 914 |
+
padding: 32px !important;
|
| 915 |
+
margin-bottom: 24px !important;
|
| 916 |
+
text-align: center !important;
|
| 917 |
+
box-shadow: var(--professional-shadow) !important;
|
| 918 |
+
}
|
| 919 |
+
|
| 920 |
+
.platform-header h1 {
|
| 921 |
+
font-size: 32px !important;
|
| 922 |
+
font-weight: 700 !important;
|
| 923 |
+
background: linear-gradient(135deg, #ffffff 0%, #3b82f6 100%) !important;
|
| 924 |
+
-webkit-background-clip: text !important;
|
| 925 |
+
-webkit-text-fill-color: transparent !important;
|
| 926 |
+
margin: 0 0 16px 0 !important;
|
| 927 |
+
}
|
| 928 |
+
|
| 929 |
+
.info-section {
|
| 930 |
+
background: rgba(255, 255, 255, 0.08) !important;
|
| 931 |
+
backdrop-filter: blur(16px) !important;
|
| 932 |
+
border: 1px solid rgba(255, 255, 255, 0.15) !important;
|
| 933 |
+
border-radius: 16px !important;
|
| 934 |
+
padding: 24px !important;
|
| 935 |
+
margin: 16px 0 !important;
|
| 936 |
+
color: var(--text-secondary) !important;
|
| 937 |
+
}
|
| 938 |
+
|
| 939 |
+
.status-section {
|
| 940 |
+
background: rgba(16, 185, 129, 0.1) !important;
|
| 941 |
+
border: 1px solid rgba(16, 185, 129, 0.3) !important;
|
| 942 |
+
border-radius: 16px !important;
|
| 943 |
+
padding: 20px 24px !important;
|
| 944 |
+
margin: 16px 0 !important;
|
| 945 |
+
color: #10b981 !important;
|
| 946 |
+
font-weight: 600 !important;
|
| 947 |
+
}
|
| 948 |
+
|
| 949 |
+
.main-interface {
|
| 950 |
+
background: var(--glass-bg) !important;
|
| 951 |
+
backdrop-filter: blur(20px) !important;
|
| 952 |
+
border: 1px solid var(--glass-border) !important;
|
| 953 |
+
border-radius: 20px !important;
|
| 954 |
+
margin: 16px 0 !important;
|
| 955 |
+
box-shadow: var(--professional-shadow) !important;
|
| 956 |
+
}
|
| 957 |
+
|
| 958 |
+
.tools-section {
|
| 959 |
+
background: var(--glass-bg) !important;
|
| 960 |
+
backdrop-filter: blur(20px) !important;
|
| 961 |
+
border: 1px solid var(--glass-border) !important;
|
| 962 |
+
border-radius: 20px !important;
|
| 963 |
+
margin: 16px 0 !important;
|
| 964 |
+
padding: 28px !important;
|
| 965 |
+
box-shadow: var(--professional-shadow) !important;
|
| 966 |
+
}
|
| 967 |
+
|
| 968 |
+
.section-title {
|
| 969 |
+
font-size: 24px !important;
|
| 970 |
+
font-weight: 600 !important;
|
| 971 |
+
color: var(--text-primary) !important;
|
| 972 |
+
margin: 0 0 20px 0 !important;
|
| 973 |
+
padding-bottom: 12px !important;
|
| 974 |
+
border-bottom: 1px solid rgba(255, 255, 255, 0.2) !important;
|
| 975 |
+
}
|
| 976 |
+
|
| 977 |
+
.gradio-container button {
|
| 978 |
+
background: linear-gradient(135deg, var(--accent-blue) 0%, var(--accent-purple) 100%) !important;
|
| 979 |
+
color: var(--text-primary) !important;
|
| 980 |
+
border: none !important;
|
| 981 |
+
border-radius: 12px !important;
|
| 982 |
+
padding: 12px 24px !important;
|
| 983 |
+
font-weight: 600 !important;
|
| 984 |
+
transition: all 0.3s ease !important;
|
| 985 |
+
}
|
| 986 |
+
|
| 987 |
+
.gradio-container button:hover {
|
| 988 |
+
transform: translateY(-2px) !important;
|
| 989 |
+
box-shadow: 0 8px 25px rgba(59, 130, 246, 0.6) !important;
|
| 990 |
+
}
|
| 991 |
+
|
| 992 |
+
.footer-section {
|
| 993 |
+
text-align: center !important;
|
| 994 |
+
padding: 28px !important;
|
| 995 |
+
color: var(--text-secondary) !important;
|
| 996 |
+
background: var(--glass-bg) !important;
|
| 997 |
+
backdrop-filter: blur(20px) !important;
|
| 998 |
+
border: 1px solid var(--glass-border) !important;
|
| 999 |
+
border-radius: 20px !important;
|
| 1000 |
+
margin-top: 32px !important;
|
| 1001 |
+
}
|
| 1002 |
+
'''
|
| 1003 |
+
|
| 1004 |
+
# Enhanced response handler with analytics
|
| 1005 |
+
def handle_user_interaction(message, history):
|
| 1006 |
+
"""Enhanced interaction handler with analytics"""
|
| 1007 |
+
if not message.strip():
|
| 1008 |
+
return "", history
|
| 1009 |
+
|
| 1010 |
+
# Convert history format
|
| 1011 |
+
simple_history = []
|
| 1012 |
+
for i in range(0, len(history), 2):
|
| 1013 |
+
if i + 1 < len(history):
|
| 1014 |
+
user_msg = history[i].get('content', '') if isinstance(history[i], dict) else str(history[i])
|
| 1015 |
+
bot_msg = history[i + 1].get('content', '') if isinstance(history[i + 1], dict) else str(history[i + 1])
|
| 1016 |
+
if user_msg and bot_msg:
|
| 1017 |
+
simple_history.append([user_msg, bot_msg])
|
| 1018 |
+
|
| 1019 |
+
# Process interaction
|
| 1020 |
+
for response_chunk in character_manager.process_user_interaction(message, simple_history):
|
| 1021 |
+
new_history = history + [
|
| 1022 |
+
{"role": "user", "content": message},
|
| 1023 |
+
{"role": "assistant", "content": response_chunk}
|
| 1024 |
+
]
|
| 1025 |
+
yield "", new_history
|
| 1026 |
+
|
| 1027 |
+
# Create professional interface
|
| 1028 |
+
with gr.Blocks(
|
| 1029 |
+
title="π Universal AI Character Management Platform",
|
| 1030 |
+
css=professional_css,
|
| 1031 |
+
theme=gr.themes.Base()
|
| 1032 |
+
) as demo:
|
| 1033 |
+
|
| 1034 |
+
# Platform header with analytics
|
| 1035 |
+
analytics = character_manager.get_character_analytics()
|
| 1036 |
+
gr.HTML(f"""
|
| 1037 |
+
<div class="platform-header">
|
| 1038 |
+
<h1>π Universal AI Character Management Platform</h1>
|
| 1039 |
+
<p><strong>Professional Character Consistency & Adaptation Tools</strong></p>
|
| 1040 |
+
<p>Compatible with OpenAI β’ Anthropic β’ Local Models β’ Custom AI Systems</p>
|
| 1041 |
+
<p>Demo Character: {analytics.get('character_name', 'creed').title()} β’
|
| 1042 |
+
Session: {analytics.get('session_id', 'NEW')} β’
|
| 1043 |
+
Interactions: {analytics.get('total_interactions', 0)}</p>
|
| 1044 |
+
</div>
|
| 1045 |
+
""")
|
| 1046 |
+
|
| 1047 |
+
# What is this? section
|
| 1048 |
+
gr.HTML("""
|
| 1049 |
+
<div class="info-section">
|
| 1050 |
+
<h3>π― What is this platform?</h3>
|
| 1051 |
+
<strong>Universal AI Character Management Platform</strong> - Professional-grade tools for maintaining
|
| 1052 |
+
consistent AI character personas across any AI system. Includes persistence, analytics, and adaptation protocols.<br><br>
|
| 1053 |
+
|
| 1054 |
+
<h3>βοΈ How does it work?</h3>
|
| 1055 |
+
<strong>Character State Management:</strong> Persistent memory and personality tracking<br>
|
| 1056 |
+
<strong>Adaptation Protocols:</strong> Fine-grained control over character behavior<br>
|
| 1057 |
+
<strong>Universal Compatibility:</strong> Works with OpenAI, Anthropic, local models, custom AI<br>
|
| 1058 |
+
<strong>Professional Analytics:</strong> Real-time consistency and authenticity scoring<br><br>
|
| 1059 |
+
|
| 1060 |
+
<h3>πΌ Why use this?</h3>
|
| 1061 |
+
<strong>Business:</strong> Consistent brand voice across customer interactions<br>
|
| 1062 |
+
<strong>Entertainment:</strong> Persistent game characters and interactive media<br>
|
| 1063 |
+
<strong>Education:</strong> Consistent teaching personas that remember students<br>
|
| 1064 |
+
<strong>Content:</strong> Reliable character voices for marketing and social media<br>
|
| 1065 |
+
<strong>Future-Proofing:</strong> Professional AI management skills for the post-developer economy
|
| 1066 |
+
</div>
|
| 1067 |
+
""")
|
| 1068 |
+
|
| 1069 |
+
# Platform status
|
| 1070 |
+
gr.HTML("""
|
| 1071 |
+
<div class="status-section">
|
| 1072 |
+
β
Universal Character Management Active β’ Cross-Platform Compatible β’ Professional Analytics Enabled
|
| 1073 |
+
</div>
|
| 1074 |
+
""")
|
| 1075 |
+
|
| 1076 |
+
# Main character interaction interface
|
| 1077 |
+
with gr.Row(elem_classes="main-interface"):
|
| 1078 |
+
chatbot = gr.Chatbot(
|
| 1079 |
+
type='messages',
|
| 1080 |
+
height=500,
|
| 1081 |
+
show_copy_button=True,
|
| 1082 |
+
show_share_button=False,
|
| 1083 |
+
avatar_images=["π€", "π"],
|
| 1084 |
+
bubble_full_width=False,
|
| 1085 |
+
show_label=False,
|
| 1086 |
+
placeholder="π Universal Character Management Platform ready for interaction...",
|
| 1087 |
+
container=False
|
| 1088 |
+
)
|
| 1089 |
+
|
| 1090 |
+
# Professional input interface
|
| 1091 |
+
with gr.Row():
|
| 1092 |
+
with gr.Column(scale=7):
|
| 1093 |
+
msg = gr.Textbox(
|
| 1094 |
+
placeholder="Interact with demonstration character (Creed Bratton) - Platform works with any AI system...",
|
| 1095 |
+
container=False,
|
| 1096 |
+
submit_btn=False,
|
| 1097 |
+
stop_btn=False
|
| 1098 |
+
)
|
| 1099 |
+
with gr.Column(scale=1, min_width=120):
|
| 1100 |
+
send_btn = gr.Button("Send Message", variant="primary", size="lg")
|
| 1101 |
+
|
| 1102 |
+
# Wire up interaction
|
| 1103 |
+
msg.submit(handle_user_interaction, inputs=[msg, chatbot], outputs=[msg, chatbot], show_progress="hidden")
|
| 1104 |
+
send_btn.click(handle_user_interaction, inputs=[msg, chatbot], outputs=[msg, chatbot], show_progress="hidden")
|
| 1105 |
+
|
| 1106 |
+
# Universal Character Management Tools
|
| 1107 |
+
with gr.Tabs():
|
| 1108 |
+
|
| 1109 |
+
# Universal Character Tools
|
| 1110 |
+
with gr.TabItem("π Universal Character Tools"):
|
| 1111 |
+
gr.HTML('<div class="section-title">π οΈ Universal AI Character Management Tools</div>')
|
| 1112 |
+
gr.HTML("""
|
| 1113 |
+
<div style="margin-bottom: 20px; padding: 12px; background: rgba(59,130,246,0.1); border-radius: 8px; font-size: 14px;">
|
| 1114 |
+
<strong>Platform Agnostic:</strong> These tools work with OpenAI GPT, Anthropic Claude, local models,
|
| 1115 |
+
and any AI system. No vendor lock-in, maximum flexibility for professional deployment.
|
| 1116 |
+
</div>
|
| 1117 |
+
""")
|
| 1118 |
+
|
| 1119 |
+
with gr.Row():
|
| 1120 |
+
with gr.Column():
|
| 1121 |
+
char_name = gr.Textbox(label="Character Name", value="professional_assistant", placeholder="Character identifier...")
|
| 1122 |
+
ai_system = gr.Dropdown(["OpenAI", "Anthropic", "Local Model", "Custom AI"], value="OpenAI", label="Target AI System")
|
| 1123 |
+
activation_output = gr.Textbox(label="Character Activation Protocol", interactive=False, lines=6)
|
| 1124 |
+
activation_btn = gr.Button("π Generate Activation Protocol", variant="primary")
|
| 1125 |
+
|
| 1126 |
+
with gr.Column():
|
| 1127 |
+
memory_facts = gr.Textbox(label="Character Memory Facts", placeholder="Facts to remember about character...")
|
| 1128 |
+
memory_output = gr.Textbox(label="Memory Management Protocol", interactive=False, lines=6)
|
| 1129 |
+
memory_btn = gr.Button("π§ Generate Memory Protocol", variant="primary")
|
| 1130 |
+
|
| 1131 |
+
with gr.Row():
|
| 1132 |
+
with gr.Column():
|
| 1133 |
+
intensity_level = gr.Slider(0.1, 1.0, value=0.8, label="Character Intensity")
|
| 1134 |
+
context_type = gr.Dropdown(["professional", "technical", "creative", "customer_service"], label="Context")
|
| 1135 |
+
intensity_output = gr.Textbox(label="Intensity Control Protocol", interactive=False, lines=5)
|
| 1136 |
+
intensity_btn = gr.Button("βοΈ Generate Intensity Control", variant="primary")
|
| 1137 |
+
|
| 1138 |
+
with gr.Column():
|
| 1139 |
+
break_reason = gr.Dropdown(["clarification", "safety", "technical", "professional"], label="Break Reason")
|
| 1140 |
+
break_output = gr.Textbox(label="Break Protocol", interactive=False, lines=5)
|
| 1141 |
+
break_btn = gr.Button("π¨ Generate Break Protocol", variant="secondary")
|
| 1142 |
+
|
| 1143 |
+
# Advanced Character Tools
|
| 1144 |
+
with gr.TabItem("π§ Advanced Character Tools"):
|
| 1145 |
+
gr.HTML('<div class="section-title">π§ Advanced Character Management</div>')
|
| 1146 |
+
|
| 1147 |
+
with gr.Row():
|
| 1148 |
+
with gr.Column():
|
| 1149 |
+
speech_sample = gr.Textbox(label="Speech Sample for Analysis", placeholder="Sample character dialogue...")
|
| 1150 |
+
speech_output = gr.Textbox(label="Speech Pattern Analysis", interactive=False, lines=5)
|
| 1151 |
+
speech_btn = gr.Button("π£οΈ Analyze Speech Patterns", variant="primary")
|
| 1152 |
+
|
| 1153 |
+
with gr.Column():
|
| 1154 |
+
knowledge_topic = gr.Textbox(label="Knowledge Topic", placeholder="Topic to map character knowledge...")
|
| 1155 |
+
knowledge_output = gr.Textbox(label="Knowledge Mapping", interactive=False, lines=5)
|
| 1156 |
+
knowledge_btn = gr.Button("π§ Map Character Knowledge", variant="primary")
|
| 1157 |
+
|
| 1158 |
+
with gr.Row():
|
| 1159 |
+
with gr.Column():
|
| 1160 |
+
validation_text = gr.Textbox(label="Response to Validate", placeholder="Character response to check...")
|
| 1161 |
+
validation_output = gr.Textbox(label="Consistency Validation", interactive=False, lines=5)
|
| 1162 |
+
validation_btn = gr.Button("β
Validate Consistency", variant="primary")
|
| 1163 |
+
|
| 1164 |
+
with gr.Column():
|
| 1165 |
+
trait_input = gr.Dropdown(["curious", "skeptical", "creative", "methodical"], label="Character Trait")
|
| 1166 |
+
capability_input = gr.Dropdown(["analysis", "research", "problem_solving", "planning"], label="AI Capability")
|
| 1167 |
+
adaptation_output = gr.Textbox(label="Character-AI Adaptation", interactive=False, lines=5)
|
| 1168 |
+
adaptation_btn = gr.Button("π Generate Adaptation Bridge", variant="primary")
|
| 1169 |
+
|
| 1170 |
+
# Character Blending & Analytics
|
| 1171 |
+
with gr.TabItem("π Analytics & Blending"):
|
| 1172 |
+
gr.HTML('<div class="section-title">π Character Analytics & Blending</div>')
|
| 1173 |
+
|
| 1174 |
+
with gr.Row():
|
| 1175 |
+
with gr.Column():
|
| 1176 |
+
primary_char = gr.Textbox(value="main_character", label="Primary Character")
|
| 1177 |
+
secondary_traits = gr.Textbox(value="helpful", label="Secondary Traits")
|
| 1178 |
+
blend_ratio = gr.Slider(0.1, 1.0, value=0.7, label="Primary/Secondary Ratio")
|
| 1179 |
+
blend_output = gr.Textbox(label="Character Blending Protocol", interactive=False, lines=6)
|
| 1180 |
+
blend_btn = gr.Button("π Generate Blending Protocol", variant="primary")
|
| 1181 |
+
|
| 1182 |
+
with gr.Column():
|
| 1183 |
+
analytics_display = gr.JSON(label="Character Analytics", value=analytics)
|
| 1184 |
+
refresh_analytics_btn = gr.Button("π Refresh Analytics", variant="secondary")
|
| 1185 |
+
export_btn = gr.Button("π Export Character Data", variant="secondary")
|
| 1186 |
+
|
| 1187 |
+
# Wire up all universal tools
|
| 1188 |
+
activation_btn.click(
|
| 1189 |
+
lambda name, system: character_manager.ai_character_activation_tool(name, system),
|
| 1190 |
+
inputs=[char_name, ai_system], outputs=[activation_output]
|
| 1191 |
+
)
|
| 1192 |
+
|
| 1193 |
+
memory_btn.click(
|
| 1194 |
+
lambda name, facts: character_manager.ai_character_memory_system(name, facts),
|
| 1195 |
+
inputs=[char_name, memory_facts], outputs=[memory_output]
|
| 1196 |
+
)
|
| 1197 |
+
|
| 1198 |
+
intensity_btn.click(
|
| 1199 |
+
lambda name, intensity, context, system: character_manager.ai_character_intensity_controller(name, intensity, context, system),
|
| 1200 |
+
inputs=[char_name, intensity_level, context_type, ai_system], outputs=[intensity_output]
|
| 1201 |
+
)
|
| 1202 |
+
|
| 1203 |
+
break_btn.click(
|
| 1204 |
+
lambda reason, system: character_manager.ai_character_break_protocol(reason, system),
|
| 1205 |
+
inputs=[break_reason, ai_system], outputs=[break_output]
|
| 1206 |
+
)
|
| 1207 |
+
|
| 1208 |
+
speech_btn.click(
|
| 1209 |
+
lambda name, sample, system: character_manager.ai_character_speech_analyzer(name, sample, system),
|
| 1210 |
+
inputs=[char_name, speech_sample, ai_system], outputs=[speech_output]
|
| 1211 |
+
)
|
| 1212 |
+
|
| 1213 |
+
knowledge_btn.click(
|
| 1214 |
+
lambda name, topic, system: character_manager.ai_character_knowledge_mapper(name, topic, system),
|
| 1215 |
+
inputs=[char_name, knowledge_topic, ai_system], outputs=[knowledge_output]
|
| 1216 |
+
)
|
| 1217 |
+
|
| 1218 |
+
validation_btn.click(
|
| 1219 |
+
lambda name, text, system: character_manager.ai_character_consistency_validator(name, text, system),
|
| 1220 |
+
inputs=[char_name, validation_text, ai_system], outputs=[validation_output]
|
| 1221 |
+
)
|
| 1222 |
+
|
| 1223 |
+
adaptation_btn.click(
|
| 1224 |
+
lambda trait, capability, system: character_manager.ai_character_adaptation_engine(trait, capability, system),
|
| 1225 |
+
inputs=[trait_input, capability_input, ai_system], outputs=[adaptation_output]
|
| 1226 |
+
)
|
| 1227 |
+
|
| 1228 |
+
blend_btn.click(
|
| 1229 |
+
lambda primary, secondary, ratio, system: character_manager.ai_character_blending_protocol(primary, secondary, ratio, system),
|
| 1230 |
+
inputs=[primary_char, secondary_traits, blend_ratio, ai_system], outputs=[blend_output]
|
| 1231 |
+
)
|
| 1232 |
+
|
| 1233 |
+
refresh_analytics_btn.click(
|
| 1234 |
+
lambda: character_manager.get_character_analytics(),
|
| 1235 |
+
outputs=[analytics_display]
|
| 1236 |
+
)
|
| 1237 |
+
|
| 1238 |
+
# Professional footer
|
| 1239 |
+
gr.HTML(f"""
|
| 1240 |
+
<div class="footer-section">
|
| 1241 |
+
<strong>π Universal AI Character Management Platform</strong><br>
|
| 1242 |
+
Professional character consistency tools for the AI-powered future<br>
|
| 1243 |
+
<strong>Platform Agnostic:</strong> Works with OpenAI, Anthropic, Local Models, Custom AI Systems<br>
|
| 1244 |
+
<strong>Demonstration Model:</strong> {character_manager.model_path}<br>
|
| 1245 |
+
Session: {analytics.get('session_id', 'NEW')} β’
|
| 1246 |
+
Consistency: {analytics.get('avg_consistency', 0):.3f} β’
|
| 1247 |
+
Authenticity: {analytics.get('avg_authenticity', 0):.3f}<br>
|
| 1248 |
+
<em>"The future belongs to those who can direct AI personalities professionally."</em>
|
| 1249 |
+
</div>
|
| 1250 |
+
""")
|
| 1251 |
+
|
| 1252 |
+
# Launch professional platform
|
| 1253 |
+
print("π Launching Universal AI Character Management Platform...")
|
| 1254 |
+
print(f"π Current Analytics: {analytics}")
|
| 1255 |
+
print("π― Ready for professional character management across all AI platforms")
|
| 1256 |
+
|
| 1257 |
+
demo.launch(
|
| 1258 |
+
ssr_mode=False,
|
| 1259 |
+
server_name="0.0.0.0",
|
| 1260 |
+
server_port=7860,
|
| 1261 |
+
share=True,
|
| 1262 |
+
show_error=True,
|
| 1263 |
+
mcp_server=True
|
| 1264 |
+
)
|
| 1265 |
+
|
| 1266 |
+
if __name__ == "__main__":
|
| 1267 |
+
main()
|