Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
+
|
| 4 |
+
tokenizer = AutoTokenizer.from_pretrained("ByteDance-Seed/UI-TARS-1.5-7B")
|
| 5 |
+
model = AutoModelForCausalLM.from_pretrained("ByteDance-Seed/UI-TARS-1.5-7B")
|
| 6 |
+
|
| 7 |
+
def predict(ui_context, goal):
|
| 8 |
+
prompt = f"<context>{ui_context}</context>\n<task>{goal}</task>"
|
| 9 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 10 |
+
outputs = model.generate(**inputs, max_new_tokens=128)
|
| 11 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 12 |
+
|
| 13 |
+
gr.Interface(fn=predict,
|
| 14 |
+
inputs=["textbox", "textbox"],
|
| 15 |
+
outputs="textbox",
|
| 16 |
+
title="UITARS 1.5 Action Predictor"
|
| 17 |
+
).launch()
|